ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Flowering ; Pharbitis ; Photoperiodic induction ; Phytochrome ; Spectrophotometry (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During an inductive dark period for flowering, changes in phytochrome have been followed in cotyledons of Pharbitis nil seedlings using a spectrophotometric and a physiological technique. There was agreement between the two techniques, both indicating a rapid lowering of the levels of the far-red-absorbing form of the pigment (Pfr) during the first 30–90 min of darkness. Thus, Pfr could provide the cue which signals the beginning of darkness and the length of the critical dark period was, in some instances, correlated with the time of Pfr disappearance. However, there was no correlation with another indicator of photoperiodic time measurement, the time in darkness at which a brief night interruption becomes inhibitory to flowering. These results imply that the transition from light to darkness is not signalled by the disappearance of Pfr. However, the involvement of other photoreceptors seems unlikely. Thus, some mode of phytochrome action other than a simple Pfr-mediated response may be involved in the light/dark-sensing reactions of photoperiodism
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Flowering ; Pharbitis ; Photoperiodic induction ; Phytochrome ; Spectrophotometry (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The Δ(ΔA) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 141 (1978), S. 1-7 
    ISSN: 1432-2048
    Keywords: Flowering ; Pharbitis ; Photomorphogenesis ; Photoperiodic induction ; Phytochrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...