ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 15 (1992), S. 269-282 
    ISSN: 1573-0662
    Keywords: Photolysis frequency ; J(NO2) ; global radiation ; aerosol ; meridional cross section ; marine atmosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Using a filter radiometer, the meridional profile of the NO2 photolysis frequency, J(NO2), was measured between 50° N and 30° S during the cruise ANTVII/1 September/October 1988 of the research vessel Polarstern on the Atlantic Ocean. Simultaneously, global broadband irradiance and acrosol were monitored. Clean marine background air with low aerosol loads (b sp=(1–2)×10-5 m-1) was encountered at the latitudes 25° N–30° N and 18° S–27° S, respectively. Under these conditions and an almost cloudless sky J(NO2) reached 7.3×10-3 s-1 (2π sr) for a zenith angle of 30°. Between 30° N and 30° S, the latitudinal variation of the J(NO2) noontime maxima was less than ± 10%, while the mean value at noon was 7.8×10-3 s-1. For the set of all data between 50° N and 30° S, a nearly linear correlation of J(NO2) vs. global broadland irradiance was found. The slope of (8.24±0.03)×10-5 s-1/mW cm-2 agrees within 10% with observations in Jülich (51° N, 6.2° E).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: Photolysis frequency ; J(O1D), O3, H2O ; OH production rate ; meridional cross-section ; marine atmosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The latitudinal variation of the photolysis frequency of ozone to O(1D) atoms, J(O1D), was measured using a filter radiometer during the cruise ANT VII/1 of the research vessel Polarstern in September/October 1988. The J(O1D) noon values exhibited a maximum of 3.6×10-5 s-1 (2π sr) at the equator and decreased strongly towards higher latitudes. J(O1D) reached highest values for clean marine background air with low aerosol load and almost cloudless sky. The J(O1D) data, measured under these conditions and a temperature of 295 K, can be expressed by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaacI% cacaqGpbWaaWbaaSqabeaaiiaacqWF8baFaaGccaqGebGaaeykaiaa% bccacqWF9aqpcaqGGaGaaeyzaiaabIhacaqGWbGaaeiiaiaabUhacq% GHsislcaaI4aGaaiOlaiaaicdacaaIYaGaeyOeI0IaaGioaiaac6ca% caaI4aGaaiiEaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZa% aaaOGaaeiiaiaabIhacaqGGaGaam4uaiabgUcaRiaaiodacaGGUaGa% aGinaiaacIhacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOnaa% aakiaadofadaahaaWcbeqaaiaaikdaaaGccaGG9bGaaeikaiaaboha% daahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaaaa!5EE9!\[J({\text{O}}^| {\text{D) }} = {\text{ exp \{ }} - 8.02 - 8.8x10^{ - 3} {\text{ x }}S + 3.4x10^{ - 6} S^2 \} {\text{(s}}^{ - 1} )\] where S represents the product of the overhead ozone column (DU) and the secant of the solar zenith angle. The meridional profile of the primary OH radical production rate P(OH) was calculated from the J(O1D) measurements and simultaneously recorded O3 and H2O mixing ratios. While the latitudinal distribution of J(O1D) and water vapour was nearly symmetric to the equator, high tropospheric ozone levels up to 40 ppb were observed in the Southern Hemisphere, SH, resulting in higher P(OH) in the SH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...