ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbohydrate  (1)
  • Phenology  (1)
  • Springer  (2)
  • 1985-1989  (2)
Collection
Publisher
  • Springer  (2)
Years
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 77 (1988), S. 506-514 
    ISSN: 1432-1939
    Keywords: Carbohydrate ; Growth form ; Nitrogen ; Phosphorus ; Tundra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a survey of 28 plant species of 6 major growth forms from Alaskan tundra, we found no consistent difference among growth forms in the chemical nature of stored reserves except for lichens and mosses (which stored C primarily as polysaccharides) and shrubs (which tended to store C more as sugars than as polysaccharides). Forbs and graminoids showed particularly great diversity in the chemical nature of stored reserves. In contrast, C, N, and P chemistry of leaves was strikingly similar among all species and growth forms. Concentrations of stored reserves of C, N, and P were highest and showed greatest seasonal fluctuations in forbs and graminoids but were relatively constant in evergreen shrubs. From this information, we draw three general conclusions: (1) the photosynthetic function of leaves strongly constrains leaf chemistry so that similar chemical composition is found in all species and growth forms: (2) the chemical nature of storage reserves is highly variable, both within and among growth forms; (3) the concentration and seasonal pattern of storage reserves are closely linked to growth-form and reflect growth-form differences in woodiness, phenology, and relative dependence upon concurrent uptake vs. storage in support of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Eriophorum vaginatum ; E. scheuchzeri ; Growth ; Flowering ; Phenology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The evergreen tussock-forming Eriophorum vaginatum revealed consistently earlier (c. 1 moth) phenology and greater biomass per tiller than the summergreen rhizomatous E. scheuchzeri in all four components measured (vegetative and reproductive shoots and stems) under the same climatic regime in central Alaska over one growing season. Greatest allocation to vegetative shoot growth occurred in mid-summer in both species. The tussock growth form of E. vaginatum raised shoot meristems 25–30 cm above the soil surface, where temperatures were warmer, permitting shoot growth to begin earlier in spring and continue longer in autumn than in E. scheuchzeri. Consequently, E. vaginatum was able to allocate reserves to reproductive tillers primarily in autumn and early spring, times when minimal reserves were required for vegetative growth. By contrast, the rhizomatous E. scheuchzeri had a more constrained growing season, and allocation to reproduction coincided with allocation to vegetative growth. For this reason, reserves were drawn down more fully in mid-summer in E. scheuchzeri than in E. vaginatum. The more conservative use of nutrient stores in E. vaginatum may relate to its great longevity, reduced allocation to reproduction (including low seedling recruitment), and relatively stable habitats. The mid-seasonal pulse of allocation to reproduction in E. scheuchzeri appears viable only in relatively fertile disturbed sites, where the soil nutrient supply is sufficient to support simultaneous allocation to vegetative growth and reproduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...