ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Phenolics ; Stress gradient ; Vegetation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The chemical constituency of flowering dogwood (Cornus florida L.) and red maple (Acer rubrum L.) foliage was analyzed over a species compositional gradient to test the hypothesis that over subtle gradients of moisture and nutrient availability production of phenolic compounds will be increased on sites of greatest stress. Calcium and nitrogen concentrations declined along the gradient in both species, while phosphorus showed a significant decline only in red maple. Lignin concentrations in both species were unrelated to the vegetation gradient, but astringent phenolics increased by 156% and 159% in dogwood and red maple, respectively. The correlation between production of polyphenolds and site quality supports previous observations that under conditions of environmental stress production of many secondary compounds is increased, and suggests that this relationship is significant over subtle environmental gradients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 79 (1989), S. 563-565 
    ISSN: 1432-1939
    Keywords: Phenolics ; Fine roots ; Stress gradient ; Vegetation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Chemical quality of fine roots (〈1 mm diameter) was determined over a gradient of species composition in the Mixed Mesophytic Forest Region. Ash-free nitrogen, calcium, and phosphorus concentrations of roots declined by 49, 41, and 72%, respectively, over a gradient of increasing soil acidity (pH 5.3 to 4.7). Lignin concentration was unrelated to either the vegetation gradient or any of the soil changes it encompassed; however, astringent phenolics increased by 275% over the same gradient. Trends in the chemical constituency of fine roots suggest that the production of phenolics in below-ground plant parts is increased on nutrient-poor sites. This response is best related to changes in species composition, especially increasing importancy of Quercus spp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...