ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Hansenula polymorpha ; Yeast ; Peroxisomes ; Proton-translocating ATPase ; Cell fractionation ; Fluorescence quenching studies ; Cytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N′-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent K m for ATP which was 4–6 mM for the peroxisomal ATPase compared to 0.6–0.9 mM for the mitochondrial enzyme. Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Candida boidinii ; Yeast ; Peroxisomes ; β-Oxidation ; d-Amino acid oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have studied the induction of peroxisomes in the methylotrophic yeast Candida boidinii by d-alanine and oleic acid. The organism was able to utilize each of these compounds as the sole carbon source and grew with growth rates of μ=0.20 h-1 (on d-alanine) or μ=0.43 h-1 (on oleic acid). Growth was associated with the development of many peroxisomes in the cells. On d-alanine a cluster of tightly interwoven organelles was observed which made up 6.3% of the cytoplasmic volume and were characterized by the presence of d-amino acid oxidase and catalase. On oleic acid rounded to elongated peroxisomes were dominant which were scattered throughout the cytoplasm. These organelles contained increased levels of β-oxidation enzymes; their relative volume fraction amounted 12.8% of the cytoplasmic volume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 147 (1987), S. 37-41 
    ISSN: 1432-072X
    Keywords: 31P NMR ; pH measurement ; Peroxisomes ; Yeast, Hansenula polymorpha ; Candida utilis ; Trichosporon cutaneum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The internal pH of peroxisomes in the yeasts Hansenula polymorpha, Candida utilis and Trichosporon cutaneum X4 was estimated by 31P nuclear magnetic resonance (NMR) spectroscopy. 31P NMR spectra of suspensions of intact cells of these yeasts, grown under conditions of extensive peroxisomal proliferation, displayed two prominent Pi-peaks at different chemical shift positions. In control cells grown on glucose, which contain very few peroxisomes, only a single peak was observed. This latter peak, which was detected under all growth conditions, was assigned to cytosolic Pi at pH 7.1. The additional peak present in spectra of peroxisome-containing cells, reflected Pi at a considerably lower pH of approximately 5.8–6.0. Experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazon (CCCP) and the ionophores valinomycin and nigericin revealed that separation of the two Pi-peaks was caused by a pH-gradient across a membrane separating the two pools. Experiments with chloroquine confirmed the acidic nature of one of these pools. In a number of transfer experiments with the yeast H. polymorpha it was shown that the relative intensity of the Pi-signal at the low pH-position was correlated to the peroxisomal volume fraction. These results strongly suggest that this peak has to be assigned to Pi in peroxisomes, which therefore are acidic in nature. The presence of peroxisome-associated Pi was confirmed cytochemically.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 124 (1980), S. 115-121 
    ISSN: 1432-072X
    Keywords: Derepression ; Catabolite inactivation ; Alcohol oxidase ; Catalase ; Formaldehyde dehydrogenase ; Formate dehydrogenase ; Hansenula polymorpha ; Kloeckera sp. 2201 ; Peroxisomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h−1 and occurred to a much smaller extent than in Hansenula polymorpha. Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Yeasts ; Candida utilis ; Hansenula polymorpha ; Microbodies ; Peroxisomes ; Glyoxysomes ; Cell fractionation ; Cytochemistry ; Catalase ; Glyoxylate cycle ; Oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During growth of the yeasts Candida utilis and Hansenula polymorpha in mineral media containing ethanol as a carbon source and ammonium sulphate as a nitrogen source, the specific activities of isocitrate lyase and malate synthase were significantly increased when compared to glucose/ammonium sulphate-grown cells. In addition to the enhanced levels of these glyoxylate cycle enzymes, an increase in the specific activities of d-amino acid oxidase, amine oxidase or urate oxidase was observed when ammonium sulphate in the ethanol medium was replaced by d-alanine, methyl- or ethylamine, or uric acid. The subcellular localization of these enzymes was investigated by cell fractionation studies involving homogenization of protoplasts followed by differential and sucrose gradient centrifugation. In ethanol/ammonium sulphate-grown cells, isocitrate lyase and malate synthase cosedimented in a fraction together with catalase and part of the malate dehydrogenase. Electron microscopy revealed that this fraction consisted of microbodies which must be regarded as glyoxysomes. Two other glyoxylate cycle enzymes, citrate synthase and aconitase together with the other part of malate dehydrogenase, cosedimented with cytochrome c oxidase, a mitochondrial marker enzyme. In ethanol/d-alanine-, ethanol/methylamine- or ethanol/ethylamine-grown C. utilis and ethanol/uric acid-grown H. polymorpha, a peroxisomal enzyme, i.e. d-amino acid oxidase, amine oxidase or uric acid oxidase cosedimented with the glyoxysomal key enzymes. Cytochemical staining experiments demonstrated that in these variously-grown cells the activities of the oxidases were confined to the microbodymatrix; this also contained malate synthase activity. Transfer of C. utilis cells from glucose/ammonium sulphate- into ethanol/ammonium sulphate-containing media resulted in an increase in the original size and volume fraction of the microbodies. A further increase was observed when ammonium sulphate was replaced by methylamine. Essentially similar results were obtained with H. polymorpha cells. In neither of the two organisms indications of de novo synthesis of microbodies was obtained during transfer experiments. Invariably the microbodies developing in cells placed in the new environment originated from organelles already present in the inoculum cells by import of the substratespecific enzyme protein(s). The combined results of biochemical, cytochemical and electron microscopical experiments showed that in the yeasts studied under appropriate conditions glyoxysomal and peroxisomal enzyme activities were localized in one and the same microbody, rather than in separate organelles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Peroxisomes ; D-amino acid oxidase ; Catalase ; Cytochemistry ; Intestinal epithelium ; Gallbladder epithelium ; Gasterosteus aculeatus (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The occurrence of microbodies in the epithelial cells of the intestine and gallbladder of the stickleback, Gasterosteus aculeatus L., is described. In the intestine the organelles are predominantly located in the apical and perinuclear zone of the cells and may contain small crystalline cores. In gallbladder epithelial cells the microbodies are distributed randomly. The latter organelles are characterized by the presence of large crystalloids. Cytochemical and biochemical experiments show that catalase and D-amino acid oxidase are main matrix components of the microbodies in both the intestinal and gallbladder epithelia. These organelles therefore are considered peroxisomes. In addition, in intestinal mucosa but not in gallbladder epithelium a low activity of palmitoyl CoA oxidase was detected biochemically. Urate oxidase and L-α hydroxy acid oxidase activities could not be demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...