ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-12
    Description: Many fungal genera have been defined based on single characters considered to be informative at the generic level. In addition, many unrelated taxa have been aggregated in genera because they shared apparently similar morphological characters arising from adaptation to similar niches and convergent evolution. This problem is aptly illustrated in Mycosphaerella. In its broadest definition, this genus of mainly leaf infecting fungi incorporates more than 30 form genera that share similar phenotypic characters mostly associated with structures produced on plant tissue or in culture. DNA sequence data derived from the LSU gene in the present study distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. In some cases, these clades represent recognisable monophyletic lineages linked to well circumscribed anamorphs. This association is complicated, however, by the fact that morphologically similar form genera are scattered throughout the order (Capnodiales), and for some species more than one morph is expressed depending on cultural conditions and media employed for cultivation. The present study shows that Mycosphaerella s.s. should best be limited to taxa with Ramularia anamorphs, with other well defined clades in the Mycosphaerellaceae representing Cercospora, Cercosporella, Dothistroma, Lecanosticta, Phaeophleospora, Polythrincium, Pseudocercospora, Ramulispora, Septoria and Sonderhenia. The genus Teratosphaeria accommodates taxa with Kirramyces anamorphs, while other clades supported in the Teratosphaeriaceae include Baudoinea, Capnobotryella, Devriesia, Penidiella, Phaeothecoidea, Readeriella, Staninwardia and Stenella. The genus Schizothyrium with Zygophiala anamorphs is supported as belonging to the Schizothyriaceae, while Dissoconium and Ramichloridium appear to represent a distinct family.\nSeveral clades remain unresolved due to limited sampling. Mycosphaerella, which has hitherto been used as a term of convenience to describe ascomycetes with solitary ascomata, bitunicate asci and 1-septate ascospores, represents numerous genera and several families yet to be defined in future studies.
    Keywords: Cibiessia ; Colletogloeum ; Dissoconium ; Kirramyces ; Mycosphaerella ; Passalora ; Penidiella ; Phaeophleospora ; Phaeothecoidea ; Pseudocercospora ; Ramularia ; Readeriella ; Stenella ; Teratosphaeria ; Zasmidium
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 21 no. 1, pp. 77-91
    Publication Date: 2024-01-12
    Description: Species of Mycosphaerella and their related anamorphs represent potentially serious foliar pathogens of Eucalyptus. The fungi treated in the present study were isolated from symptomatic Eucalyptus leaves collected in Thailand during June \xe2\x80\x93October 2007. Species were initially identified based on morphological and cultural characteristics. Identifications were confirmed using comparisons of DNA sequence data of the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions. To help distinguish species of Pseudocercospora, the dataset was expanded by generating partial sequences of the translation elongation factor 1-\xce\xb1 and actin genes. By integrating the morphological and molecular datasets, five new taxa were distinguished, namely Mycosphaerella irregulari, M. pseudomarksii, M. quasiparkii, Penidiella eucalypti and Pseudocercospora chiangmaiensis, while M. vietnamensis represents a new record for Thailand.
    Keywords: Eucalyptus ; Mycosphaerella ; Mycosphaerella leaf disease ; Penidiella ; Pseudocercospora ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 23 no. 1, pp. 119-146
    Publication Date: 2024-01-12
    Description: Recent phylogenetic studies based on multi-gene data have provided compelling evidence that the Mycosphaerellaceae and Teratosphaeriaceae represent numerous genera, many of which can be distinguished based on their anamorph morphology. The present study represents the second contribution in a series describing several novel species in different capnodealean genera defined in a previous study. Novelties on Eucalyptus from Australia include: Penidiella pseudotasmaniensis, P. tenuiramis, Phaeothecoidea intermedia, P. minutispora, Pseudocercospora tereticornis, Readeriella angustia, R. eucalyptigena, R. menaiensis, R. pseudocallista, R. tasmanica, Teratosphaeria alboconidia, T. complicata, T. majorizuluensis, T. miniata, T. profusa, Zasmidium aerohyalinosporum and Z. nabiacense, while Teratosphaeria xenocryptica is described on Eucalyptus from Chile. Novelties on other hosts include Phaeophleospora eugeniicola on Eugenia from Brazil, and Zasmidium nocoxi on twig litter from the USA.
    Keywords: Mycosphaerella ; Penidiella ; Phaeophleospora ; Phaeothecoidea ; Pseudocercospora ; Readeriella ; Teratosphaeria ; Zasmidium
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 26 no. 1, pp. 70-84
    Publication Date: 2024-01-12
    Description: The Cape Floral Region represents one of the world\xe2\x80\x99s biodiversity hot spots, with a high level of plant, animal and insect endemism. The fungi occurring in this region, however, remain poorly studied. It is widely postulated that each plant species should harbour at least five to six unique fungal species, a number that we regard to be a huge underestimate. To test this hypothesis, we decided to study a single senescent flower of Phaenocoma prolifera (\xe2\x80\x98everlasting\xe2\x80\x99; Asteraceae) collected in South Africa, and posed the question as to how many different species of fungi could be isolated and cultivated from 10 leaf bracts. Using a damp chamber technique, numerous microfungi could be induced to sporulate, enabling most of them to be successfully isolated on artificial agar media.\nIsolates were subsequently subjected to DNA sequencing of the ITS and LSU nrDNA regions. During the course of this study 17 species could be cultivated and identified, of which 11 appeared to be new to science. These include Catenulostroma hermanusense, Cladosporium phaenocomae, Devriesia tardicrescens, Exophiala capensis, Penidiella aggregata, P. ellipsoidea, Teratosphaeria karinae, Toxicocladosporium pseudoveloxum spp. nov., and Xenophacidiella pseudocatenata gen. & sp. nov. Further studies are now required to determine if these fungi also occur as endophytes in healthy flowers. If this trend holds true for other plant hosts from southern Africa, it would suggest that there are many more fungi present in the Cape Floral Region than estimated in previous studies.
    Keywords: Batcheloromyces ; Catenulostroma ; Cladosporium ; Devriesia ; Exophiala ; ITS ; LSU ; Penicillium ; Penidiella ; Phaenocoma prolifera ; systematics ; Teratosphaeria ; Toxicocladosporium ; Xenophacidiella
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...