ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Peanut  (1)
  • Penicillium chrysogenum  (1)
  • 1
    ISSN: 1432-1890
    Keywords: Key words Arbuscular mycorrhiza ; Iron ; Peanut ; Phosphorus ; Sorghum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The influence of an arbuscular mycorrhizal (AM) fungus on phosphorus (P) and iron (Fe) uptake of peanut (Arachis hypogea L.) and sorghum (Sorghum bicolor L.) plants was studied in a pot experiment under controlled environmental conditions. The plants were grown for 10 weeks in pots containing sterilised calcareous soil with two levels of Fe supply. The soil was inoculated with rhizosphere microorganisms only or with rhizosphere microorganisms together with an AM fungus (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe). An additional small soil compartment accessible to hyphae but not roots was added to each pot after 6 weeks of plant growth. Radiolabelled P and Fe were supplied to the hyphae compartment 2 weeks after addition of this compartment. After a further 2 weeks, plants were harvested and shoots were analysed for radiolabelled elements. In both plant species, P uptake from the labelled soil increased significantly more in shoots of mycorrhizal plants than non-mycorrhizal plants, thus confirming the well-known activity of the fungus in P uptake. Mycorrhizal inoculation had no significant influence on the concentration of labelled Fe in shoots of peanut plants. In contrast, 59Fe increased in shoots of mycorrhizal sorghum plants. The uptake of Fe from labelled soil by sorghum was particularly high under conditions producing a low Fe nutritional status of the plants. These results are preliminary evidence that hyphae of an arbuscular mycorrhizal fungus can mobilise and/or take up Fe from soil and translocate it to the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; coprogen ; plant nutrition ; Penicillium chrysogenum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Cucumber, as a strategy I plant, and Maize as a strategy II plant, were cultivated in hydroponic culture in the presence of a ferrated siderophore mixture (1 μM) from a culture of Penicillium chrysogenumisolated from soil. The siderophore mixture significantly improved the iron status of these plants as measured by chlorophyll concentration to the same degree as a 100-fold higher FeEDTA supply. Analysis of the siderophore mixture from P. chrysogenum by HPLC and electrospray mass spectrometry revealed that besides the trihydroxamates, coprogen and ferricrocin, large amounts of dimerum acid and fusarinines were present which represent precursor siderophores or breakdown products of coprogen. In order to prove the iron donor properties of dimerum acid and fusarinines for plants, purified coprogen was hydrolyzed with ammonia and the hydrolysis products consisting of dimerum acid and fusarinine were used for iron uptake by cucumber and maize. In short term experiments radioactive iron uptake and translocation rates were determined using ferrioxamine B, coprogen and hydrolysis products of coprogen. While the trihydroxamates revealed negligible or intermediate iron uptake rates by both plant species, the fungal siderophore mixture and the ammoniacal hydrolysis products of coprogen showed high iron uptake, suggesting that dimerum acid and fusarinines are very efficient iron sources for plants. Iron reduction assays using cucumber roots or ascorbic acid also showed that iron bound to hydrolysis products of coprogen was more easily reduced compared to iron bound to trihydroxamates. Ligand exchange studies with epi-hydroxymugineic acid and EDTA showed that iron was easily exchanged between coprogen hydrolysis products and phytosiderophores or EDTA. The results indicate that coprogen hydrolysis products are an excellent source for Fe nutrition of plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...