ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Particle aggregation  (2)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 60 (1999), S. 545-567 
    ISSN: 1432-0819
    Keywords: Key words Ignimbrite ; Pyroclastic suspension current ; Column collapse ; Physical modeling ; Welding ; Particle aggregation ; Co-ignimbrite ash
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Analogue experiments in part I led to the conclusion that pyroclastic flows depositing very high-grade ignimbrite move as dilute suspension currents. In the thermo–fluid–dynamical model developed, the degree of cooling of expanded turbulent pyroclastic flows dynamically evolves in response to entrainment of air and mass loss to sedimentation. Initial conditions of the currents are derived from column-collapse modeling for magmas with an initial H2O content of 1–3 wt.% erupting through circular vents and caldera ring-fissures. The flows spread either longitudinally or radially from source up to a runout distance that increases with higher mass flux but decreases with higher gas content, temperature, bottom slope and coarser initial grain size. Progressive dilution by entrainment and sedimentation causes pyroclastic currents to transform into buoyant ash plumes at the runout distance. The ash plumes reach stratospheric heights and distribute 30–80% of the erupted material as widespread co-ignimbrite ash. Pyroclastic suspension currents with initial mass fluxes of 107-1012 kg/s can spread for tens of kilometers with only limited cooling, although they move as supercritical, strongly entraining currents for the eruption conditions considered here. With increasing eruption mass flux, cooling during passage through the fountain diminishes while cooling during flow transport increases. The net effect is that eruption temperature exerts the prime control on emplacement temperature. Pyroclastic suspension currents can form welded ignimbrite across their entire extent if eruption temperature is To〉1.3.Tmw, the minimum welding temperature. High eruption rates, a large fraction of fine ash, and a ring-fissure vent favor the formation of extensive high-grade ignimbrite. For very hot eruptions producing sticky, partially molten pyroclasts, analysis of particle aggregation systematics shows that factors favoring longer runout also favor more efficient aggregation, which reduces runout. As a result, very high-grade ignimbrites cannot spread more than a few tens of kilometers from their source. In cooler pyroclastic currents, particles do not aggregate, and the sedimentation process may involve re-entrainment of particles, which potentially leads to more extensive cooling and longer runout; such effects, however, are only significant when net erosion of substrate occurs. Model results can be employed to estimate mass flux and duration of ignimbrite eruptions from measured ignimbrite masses and aspect ratios. The model also provides an alternative explanation of the observed decrease in H/Lratios with ignimbrite mass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 59 (1998), S. 414-435 
    ISSN: 1432-0819
    Keywords: Key words High-grade ignimbrite ; Particle aggregation ; Welding ; Fluidization ; Turbulent suspension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  High-grade ignimbrites are thought to be deposited by pyroclastic flows at temperatures exceeding minimum welding temperature or even solidus temperature. Corresponding pyroclastic-flow particles range from plastic to partially liquid and are able to aggregate or coalesce. This contrasts with particles in pyroclastic flows producing unwelded ignimbrite, which are capable of elastic grain interactions. The low aspect ratio and great areal extent of high-grade ignimbrites requires transport in a particulate state either by (a) high-concentration mass flow facilitated by fluidizing gas reducing internal friction, or by (b) expanded turbulent flow of low but downward increasing concentration. This paper presents experiments designed to investigate the effects of plastic to liquid particles on these two contrasting transport mechanisms. Gas fluidization experiments using polyethyleneglycole (PEG) powders heated above minimum sintering (Tms) and melting (Tm) temperatures cover a wide range of fluidization velocities (Umf〉Ua〉0.6·Ut) but are always in the bubbly fluidization regime similar to fluidized ignimbrite ash, where particle volume concentration outside the bubbles is high (≈10–1). When the powders reach a critical temperature Tm≥T≥Tms, defluidization by catastrophic particle aggregation immediately commences in both stationary and laterally moving fluidized beds as well as in experiments using mixtures of high- and low-Tm (≥30 wt.%) PEG powders, when T≥Tms of the lower-Tm powder. This indicates that extended particulate transport at T≥Tms is not possible at such high particle concentrations. In the turbulent flow experiments, liquid sprays of molten PEG or water, vertically injected into a high-Re (〉104) horizontal air flow, form a low-concentration (10–5 to 10–4) turbulent suspension current. Proximal formation of partially coalesced aggregates, which settle faster than individual particles, causes the measured downstream decay of sedimentation rate to be steeper than predicted by theory of single solid-particle sedimentation from turbulent suspensions. As particles become finer downstream and coalescence efficiency decreases in response to cooling, more distally formed aggregates become too small and rare to modify sedimentation-rate decay from that of suspension flows containing solid particles. The key difference between the two transport systems is particle concentration, C. Since particle collision rate Rcoll∝C2, collision rates in fluidized beds are so high that all particles immediately aggregate when coalescence efficiency (1≥Ecoal≥0) is larger than 10-3. Low-concentration suspensions, on the other hand, require much higher values of Ecoal for significant aggregation to occur. Dilute pyroclastic flows will have higher particle volume fractions (≈10–3) than the experimental currents, but then viscous pyroclasts should have lower coalescence efficiencies than PEG droplets. Experimental results thus support an expanded turbulent transport mechanism of pyroclastic flows generating extensive high-grade ignimbrite sheets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...