ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Shock waves 2 (1992), S. 113-116 
    ISSN: 1432-2153
    Keywords: Shear stress and strain ; Partial dislocations ; Stacking faults
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics , Technology
    Notes: Abstract A mechanism responsible for the high speed shear relaxation immediately behind shock fronts is suggested. The shear stress generated by the shock front causes the growth of two-dimensional defects in the crystal lattice, known as stacking faults (SF). Increasing the SF concentration and area leads to the absorption of impact energy. A breach of the lattice symmetry due to the SF presence causes an additional shift in peaks of the x-ray diffraction pattern obtained from the shock compressed material. Thus pulse x-ray diffraction is the only method that experimentally measures both the dilatational and deviatoric components of the deformation, which takes place during shock wave passage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: A generalized methodology to structural life prediction, design, and reliability based upon a fatigue criterion is advanced. The life prediction methodology is based in part on work of Weibull and Lundberg and Palmgren. The approach incorporates the computed life of elemental stress volumes of a complex machine element to predict system life. The results of coupon fatigue testing can be incorporated into the analysis allowing for life prediction and component or structural renewal rates with reasonable statistical certainty.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 85-1140
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-X-68174 , E-7219
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...