ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Geology 287 (2011): 14-30, doi:10.1016/j.margeo.2011.07.001.
    Description: A 4500-year record of hurricane-induced storm surges is developed from sediment cores collected from a coastal sinkhole near Apalachee Bay, Florida. Recent deposition of sand layers in the upper sediments of the pond was found to be contemporaneous with significant, historic storm surges at the site modeled using SLOSH and the Best Track, post-1851 A.D. dataset. Using the historic portion of the record for calibration, paleohurricane deposits were identified by sand content and dated using radiocarbon-based age models. Marine-indicative foraminifera, some originating at least 5 km offshore, were present in several modern and ancient storm deposits. The presence and long-term preservation of offshore foraminifera suggest that this site and others like it may yield promising microfossil-based paleohurricane reconstructions in the future. Due to the sub-decadal (~ 7 year) resolution of the record and the site’s high susceptibility to hurricane-generated storm surges, the average, local frequency of recorded events, approximately 3.9 storms per century, is greater than that of previously published paleohurricane records from the region. The high incidence of recorded events permitted a time series of local hurricane frequency during the last five millennia to be constructed. Variability in the frequency of the largest storm layers was found to be greater than what would likely occur by chance alone, with intervals of both anomalously high and low storm frequency identified. However, the rate at which smaller layers were deposited was relatively constant over the last five millennia. This may suggest that significant variability in hurricane frequency has occurred only in the highest magnitude events. The frequency of high magnitude events peaked near 6 storms per century between 2800 and 2300 years ago. High magnitude events were relatively rare with about 0-3 storms per century occurring between 1900 to 1600 years ago and between 400 to 150 years ago. A marked decline in the number of large storm deposits, which began around 600 years ago, has persisted through present with below average frequency over the last 150 years when compared to the preceding five millennia.
    Description: Funding for this research was supported by the National Science Foundation and the Coastal Ocean Institute. the model. The Florida State University Marine Laboratory provided lodging during fieldwork. This research was completed during an American Meteorological Society Graduate Fellowship, National Science Foundation Graduate Fellowship and Coastal Ocean Institute Fellowship. This work was further supported by National Science Foundation award #OCE-0903020.
    Keywords: Paleotempestology ; Paleohurricane ; Hurricane ; Tropical cyclone ; Sinkhole ; Storm surge ; SLOSH ; Gulf of Mexico ; Apalachee Bay ; Holocene
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 2993–3008, doi:10.1002/ggge.20217.
    Description: Recent work suggests that the patterns of intense (≥category 3 on the Saffir-Simpson scale) hurricane strikes over the last few millennia might differ from that of overall hurricane activity during this period. Prior studies typically rely on assigning a threshold storm intensity required to produce a sedimentological overwash signal at a particular coastal site based on historical analogs. Here, we improve on this approach by presenting a new inverse-model technique that constrains the most likely wind speeds required to transport the maximum grain size within resultant storm deposits. As a case study, the technique is applied to event layers observed in sediments collected from a coastal sinkhole in northwestern Florida. We find that (1) simulated wind speeds for modern deposits are consistent with the intensities for historical hurricanes affecting the site, (2) all deposits throughout the ∼2500 year record are capable of being produced by hurricanes, and (3) a period of increased intense hurricane frequency is observed between ∼1700 and ∼600 years B.P. and decreased intense storm frequency is observed from ∼2500 to ∼1700 and ∼600 years B.P. to the present. This is consistent with prior reconstructions from nearby sites. Changes in the frequency of intense hurricane strikes may be related to the degree of penetration of the Loop Current in the Gulf of Mexico.
    Description: This work was supported by the National Science Foundation.
    Description: 2014-02-22
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Inverse-modeling ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © Coastal Education and Research Foundation, 2021. This article is posted here by permission of Coastal Education and Research Foundation for personal use, not for redistribution. The definitive version was published in Journal of Coastal Research 37(2), (2021): 326-33, https://doi.org/10.2112/JCOASTRES-D-19-00159.1.
    Description: Tropical cyclones pose a growing threat to coastal infrastructure and livelihood. Because instrumental and historic records are too short to help us understand interactions between tropical cyclones and climate on a longer scale, proxy records are the only means for reconstructing millennia of tropical cyclone impacts. This study determines grain-size trends in storm-induced overwash deposits along a transect of sediment cores from a salt marsh in Mattapoisett, Massachusetts, to characterize sorting trends and compare deposits associated with individual storms. The overwash deposits preserved within the high-marsh peat provide a record spanning the last two millennia. Building on a 2010 study, a different approach was used to accurately determine the grain-size distribution of overwash deposits from cores in a transect running perpendicular to the adjacent sandy/gravely barrier. Although maximum grain-size values are expected to decrease as distance from the barrier increases, not all event deposits that were studied follow this trend within uncertainty. Analysis of the storm event beds reveal a significant difference in settling trends between historic and prehistoric deposits, with historic deposits largely displaying landward-fining trends and prehistoric deposits largely displaying landward-coarsening trends. This suggests changes in the hydrodynamic or that geomorphic regime may have altered the way in which storm beds were deposited at this site. This new in-depth, transect-based approach has utility for improving the accuracy of future storm reconstructions, particularly for events for which no historic record exists.
    Keywords: Paleotempestology ; Sediment transport ; Tropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...