ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Strike-slip faults ; kink bands ; Sierra Nevada ; stress orientation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Small left-lateral strike-slip faults and right-lateral monoclinal kink bands with subvertical fold axes may be related to the formation of a very large right-lateral kink band (Bear Creek kink band), about 8 km wide and at least 15 km long, trending N27W along Bear Creek Valley in the Mt. Abbot quadrangle, Sierra Nevada, California. A foliation within Bear Creek Valley is defined by vertical slabs of granodiorite bounded by joints and faults. Small strike-slip faults and larger fault zones have nucleated along preëxisting joints and accommodated shearing between granodiorite slabs. The orientations of small cracks that occur near the tips of faults or connect adjacent fault segments indicate that the direction of maximum compression was about 20° counterclockwise from traces of joints at the time the faults nucleated. In some places where faults are closely spaced there are small, right-lateral kink bands with widths of 1 to 20 m. The slabs of granodiorite are gently curved through the kink bands, and analysis of the orientations of slabs in the limbs of the small kink bands indicates that the direction of maximum compression during kink-band formation was 15° to 20° counterclockwise from the traces of faults outside the kink bands. The orientation of the maximum compression for the formation of the small cracks at tips of many strike-slip faults and for the formation of the small kink bands, relative to the orientation of the maximum compression inferred from the joints on the limb of Bear Creek kink band, suggests that the foliation within the Bear Creek Valley has reoriented a maximum of 40° to 60° clockwise. Although the various orientations of joints, faults, and kink bands could be explained in terms of different regional compression directions at different places and at different times in the Mt. Abbot quadrangle, a much simpler interpretation, based on analysis of large and small structures in the granodiorite in Bear Creek Valley, is that they all formed in response to one maximum regional compression in the direction N25E.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 115 (1977), S. 69-86 
    ISSN: 1420-9136
    Keywords: Stress field regional ; Volcanic dike pattern ; Paleopiezometer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The radial pattern of syenite and syenodiorite dikes of the Spanish Peaks region is analysed using theories of elasticity and dike emplacement. The three basic components of Odé's model for the dike pattern (a pressurized, circular hole; a rigid, planar boundary; and uniform regional stresses) are adopted, but modified to free the regional stresses from the constraint of being orthogonal to the rigid boundary. Dike areal density, the White Peaks intrusion, the strike of the upturned Mesozoic strata, and the contact between these strata and the intensely folded and faulted Paleozoic rocks are used to brient the rigid boundary along a north-south line. The line of dike terminations locates the rigid boundary about 8 km west of West Peak. The location of a circular plug, Goemmer Butte, is chosen as a point of isotropic stress. A map correlating the location of isotropic stress points with regional stress parameters is derived from the theory and used to determine a regional stress orientation (N82E) and a normalized stress magnitude. The stress trajectory map constructed using these parameters mimics the dike pattern exceptionally well. The model indicates that the regional principal stress difference was less than 0.05 times the driving pressure in the West Peak intrusion. The regional stress difference probably did not exced 5 MN/m2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...