ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Paleoceanography  (2)
  • 138-844A; Comment; Cumulative Offset; Curated Length; Differential Offset; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Joides Resolution; Leg138; Liner Length; North Pacific Ocean; Ocean Drilling Program; ODP; Sample code/label; Section Top in meters below surface; Section Top in meters composite depth  (1)
  • Acoustic and oceanography data in the East China Sea
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: This document describes data, sensors, and other useful information pertaining to the ONR sponsored QPE field program to quantify, predict and exploit uncertainty in observations and prediction of sound propagation. This experiment was a joint operation between Taiwanese and U.S. researchers to measure and assess uncertainty of predictions of acoustic transmission loss and ambient noise, and to observe the physical oceanography and geology that are necessary to improve their predictability. This work was performed over the continental shelf and slope northeast of Taiwan at two sites: one that was a relatively flat, homogeneous shelf region and a more complex geological site just shoreward of the shelfbreak that was influenced by the proximity of the Kuroshio Current. Environmental moorings and ADCP moorings were deployed and a shipboard SeaSoar vehicle was used to measure environmental spatial structure. In addition, multiple bottom moored receivers and a horizontal hydrophone array were deployed to sample transmission loss from a mobile source and ambient noise. The acoustic sensors, environmental sensors, shipboard resources, and experiment design, and their data, are presented and described in this technical report.
    Beschreibung: Funding was provided by the Office of Naval Research under Contract No. N00014-08-1-0763
    Schlagwort(e): QPE experiment and mooring information ; Acoustic and oceanography data in the East China Sea ; Quantifying, predicting and exploiting uncertainty initiative ; Ocean Researcher 1 (Ship) Cruise 911 ; Ocean Researcher 1 (Ship) Cruise 912 ; Ocean Researcher 2 (Ship) Cruise 1639 ; Ocean Researcher 2 (Ship) Cruise 1660 ; Ocean Researcher 2 (Ship) Cruise 1665 ; Ocean Researcher 2 (Ship) Cruise 1667 ; Ocean Researcher 3 (Ship) Cruise 1390 ; Ocean Researcher 3 (Ship) Cruise 1394
    Repository-Name: Woods Hole Open Access Server
    Materialart: Technical Report
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0016-7835
    Schlagwort(e): Key words Paleoclimate ; 3D visualization ; Milankovitch cycles ; Orbital models ; Equatorial Pacific ; Paleoceanography
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract  Recent developments in continuous core-logging techniques now permit us to recover the high-resolution time series necessary for the detailed spectral analyses of paleoclimatic proxy records. When applied to long records recovered by scientific drilling (5–10 Ma) they enable us to look at the long-term history and evolution of the ocean's response to orbital forcing. A serious limitation in these studies is the need to display the complex, multidimensional spatial and temporal interactions of the ocean-climate system in an easily comprehensible manner. We have addressed this issue by developing a series 3D visualization tools which permit visualization of the role of the orbital parameters in determining the latitudinal variation of insolation as well as the interactive exploration of multidimensional data sets. The ORBITS tool allows us to visualize the effect of orbital eccentricity, precession, and tilt on the latitudinal distribution of insolation on the earth at the solstices and the equinoxes for any time over the past 5 Ma (for Berger's orbital model) or 10 Ma (for Laskar's orbital model). The effect of the orbital parameters on insolation can be viewed individually, in pairs, or all three together. By moving the model steadily through time, the rate at which orbitally induced changes in insolation occur can also be visualized. To look at the ocean's response to orbital forcing we take the long time series generated from our paleoclimatic proxies and calculate their spectrum over a fixed, but sliding, time window. To view the complex multidimensional relationships found in these evolutionary spectral analyses, we use another interactive 3D data exploration tool developed at the University of New Brunswick (Canada). This tool (FLEDERMAUS) uses a six-degrees-of-freedom input device (BAT) and a series of software modules for color coding, shading, and rendering complex data sets, to allow the user to interactively "fly" through the multidimensional data. Through the use of color, texture, and 3D position, as many as six or seven variables can be explored in a simple and intuitive manner. With special liquid-crystal-display glasses, the scene can be viewed in true "stereo." We use these tools to explore the relationship between orbital forcing and the response of the benthic isotope and calcium carbonate record at ODP Site 846 (90°W and 5°S) This analysis shows an equatorial Pacific carbonate record which has a large component of linear response to tilt, but little linear response to precession. There is a major shift in response, from a carbonate-dominated response to an isotope (ice volume)-dominated response at approximately 4.5 Ma, and as expected, there is a large nonlinear response at the lower frequencies (400 and 100 kyr) during the past 800 kyr to 1 Ma
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    International journal of earth sciences 85 (1996), S. 505-512 
    ISSN: 1437-3262
    Schlagwort(e): Paleoclimate ; 3D visualization ; Milankovitch cycles ; Orbital models ; Equatorial Pacific ; Paleoceanography
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract Recent developments in continuous core-logging techniques now permit us to recover the high-resolution time series necessary for the detailed spectral analyses of paleoclimatic proxy records. When applied to long records recovered by scientific drilling (5–10 Ma) they enable us to look at the long-term history and evolution of the ocean’s response to orbital forcing. A serious limitation in these studies is the need to display the complex, multidimensional spatial and temporal interactions of the ocean-climate system in an easily comprehensible manner. We have addressed this issue by developing a series 3D visualization tools which permit visualization of the role of the orbital parameters in determining the latitudinal variation of insolation as well as the interactive exploration of multidimensional data sets. The ORBITS tool allows us to visualize the effect of orbital eccentricity, precession, and tilt on the latitudinal distribution of insolation on the earth at the solstices and the equinoxes for any time over the past 5 Ma (for Berger’s orbital model) or 10 Ma (for Laskar’s orbital model). The effect of the orbital parameters on insolation can be viewed individually, in pairs, or all three together. By moving the model steadily through time, the rate at which orbitally induced changes in insolation occur can also be visualized. To look at the ocean’s response to orbital forcing we take the long time series generated from our paleoclimatic proxies and calculate their spectrum over a fixed, but sliding, time window. To view the complex multidimensional relationships found in these evolutionary spectral analyses, we use another interactive 3D data exploration tool developed at the University of New Brunswick (Canada). This tool (FLEDERMAUS) uses a six-degrees-of-freedom input device (BAT) and a series of software modules for color coding, shading, and rendering complex data sets, to allow the user to interactively “fly” through the multidimensional data. Through the use of color, texture, and 3D position, as many as six or seven variables can be explored in a simple and intuitive manner. With special liquid-crystal-display glasses, the scene can be viewed in true “stereo.” We use these tools to explore the relationship between orbital forcing and the response of the benthic isotope and calcium carbonate record at ODP Site 846 (90°W and 5°S) This analysis shows an equatorial Pacific carbonate record which has a large component of linear response to tilt, but little linear response to precession. There is a major shift in response, from a carbonate-dominated response to an isotope (ice volume)-dominated response at approximately 4.5 Ma, and as expected, there is a large nonlinear response at the lower frequencies (400 and 100 kyr) during the past 800 kyr to 1 Ma
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-01-09
    Schlagwort(e): 138-844A; Comment; Cumulative Offset; Curated Length; Differential Offset; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Joides Resolution; Leg138; Liner Length; North Pacific Ocean; Ocean Drilling Program; ODP; Sample code/label; Section Top in meters below surface; Section Top in meters composite depth
    Materialart: Dataset
    Format: text/tab-separated-values, 64 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...