ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PHYSICS (GENERAL)  (5)
  • 1
    Publication Date: 2004-12-03
    Description: Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center, The 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 399-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: For precise time intercomparisons between a master frequency standard and a slave time scale, we have found it useful to quantitatively compare different fitting strategies by examining the standard uncertainty in time or average frequency. It is particularly useful when designing procedures which use intermittent intercomparisons, with some parameterized fit used to interpolate or extrapolate from the calibrating intercomparisons. We use the term 'metafitting' for the choices that are made before a fitting procedure is operationally adopted. We present methods for calculating the standard uncertainty for general, weighted least-squares fits and a method for optimizing these weights for a general noise model suitable for many PTTI applications. We present the results of the metafitting of procedures for the use of a regular schedule of (hypothetical) high-accuracy frequency calibration of a maser time scale. We have identified a cumulative series of improvements that give a significant reduction of the expected standard uncertainty, compared to the simplest procedure of resetting the maser synthesizer after each calibration. The metafitting improvements presented include the optimum choice of weights for the calibration runs, optimized over a period of a week or 10 days.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center, The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 347-360
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-24
    Description: In most of the experiments, 1 pps pulses of the station atomic clocks were exchanged between the partners, and a cubic equation was fitted to the 1000 to 2000 second measurements. The equations were exchanged and substracted to obtain the time difference of the stations. The standard deviation in the fit of the equations varied, depending on conditions, from 1.5 ns to 16 ns. For the last month of the Hermes experiment, a 1 MHz signal was used, giving a standard deviation of 0.18 ns. The comparison of the time scales via satellite and via Loran-C (BIH Circular D) show clearly that some Loran-C links are very good, but that the NBS link varies by 1 micron s. Via the satellite the frequencies of the time scales can be compared with an accuracy of 2 x 10 to the minus 14 power.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center Proc. of the 11th Ann. Precise Time and; lanning Meeting
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center, The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 249-266
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-07
    Description: At each station the differences were measured between the local UTC seconds pulse and the remote UTC pulse received by satellite. The difference between the readings, if station delays are assumed to be symmetrical, is two times the difference between the clocks at the two ground station sites. Over a 20-minute period, the precision over the satellite is better than 1 ns. The time transfer from NRC to the CRC satellite terminal near Ottawa and from NBS to the Denver HEW terminal was examined.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center Proc. of the Tenth Ann. Precise Time and Time Interval (PTTI) Appl. and Planning Meeting; p 585-600
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...