ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 71.27.+a Strongly correlated electron systems; heavy fermions - 76.60.Gv Quadrupole resonance  (1)
Collection
Keywords
  • PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 71.27.+a Strongly correlated electron systems; heavy fermions - 76.60.Gv Quadrupole resonance  (1)
  • NMR  (1)
  • high pressure  (1)
  • magnetic materials  (1)
  • phase transitions  (1)
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 18 (2000), S. 601-604 
    ISSN: 1434-6036
    Keywords: PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 71.27.+a Strongly correlated electron systems; heavy fermions - 76.60.Gv Quadrupole resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We have carried out 115In nuclear quadrupole resonance (NQR) measurements in CeRhIn5. At ambient pressure, CeRhIn5 undergoes an antiferromagnetic AF phase transition at K. The 115In NQR spectrum has shown the appearance of a small internal field in the direction perpendicular to the tetragonal c-axis. With application of a hydrostatic pressure, the AF state is suppressed and the superconductivity appears just above the critical pressure (P = 17 kbar). The nuclear spin lattice relaxation rate 1/T1 of 115In measured at P = 27 kbar indicates the occurrence of the superconductivity in the nearly AF region. In the superconducting state, 1/T1 has no Hebel-Slichter coherence peak just below of 2 K and has a power law T-dependence (T3) down to 300 mK. This is consistent with anisotropic superconductivity, with line nodes in the superconducting energy gap: non-s-wave superconductivity occurs in CeRhIn5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...