ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • Oxygen isotopes  (5)
  • Coral  (4)
  • Little Ice Age  (3)
  • AAIW  (2)
  • Indian monsoon  (2)
Collection
  • Articles  (15)
Source
Keywords
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3231, doi:10.1029/2012PA002313.
    Description: Accurate low-latitude sea surface temperature (SST) records that predate the instrumental era are needed to put recent warming in the context of natural climate variability and to evaluate the persistence of lower frequency climate variability prior to the instrumental era and the possible influence of anthropogenic climate change on this variability. Here we present a 235-year-long SST reconstruction based on annual growth rates (linear extension) of three colonies of the Atlantic coral Siderastrea siderea sampled at two sites on the northeastern Yucatan Peninsula, Mexico, located within the Atlantic Warm Pool (AWP). AWP SSTs vary in concert the Atlantic Multidecadal Oscillation (AMO), a basin-wide, quasiperiodic (∼60–80 years) oscillation of North Atlantic SSTs. We demonstrate that the annual linear growth rates of all three coral colonies are significantly inversely correlated with SST. We calibrate annual linear growth rates to SST between 1900 and 1960 AD. The linear correlation coefficient over the calibration period is r = −0.77 and −0.66 over the instrumental record (1860–2008 AD). We apply our calibration to annual linear growth rates to extend the SST record to 1775 AD and show that multidecadal SST variability has been a persistent feature of the AWP, and likely, of the North Atlantic over this time period. Our results imply that tropical Atlantic SSTs remained within 1°C of modern values during the past 225 years, consistent with a previous reconstruction based on coral growth rates and with most estimates based on the Mg/Ca of planktonic foraminifera from marine sediments.
    Description: Funding was provided by a scholarship to L.F.V.B. from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT-Mexico), by CONACyT projects 104358 and 23749 to P.B., and by NSF OCE-0926986 to A.L.C. and D.W.O.
    Description: 2013-03-29
    Keywords: Atlantic Warm Pool ; Atlantic multidecadal variability ; Little Ice Age ; Sr/Ca ; Coral ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1014, doi:10.1029/2005PA001162.
    Description: Sea surface temperature (SST) and seawater δ18O (δ18Ow) were reconstructed in a suite of sediment cores from throughout the Arabian Sea for four distinct time intervals (0 ka, 8 ka, 15 ka, and 20 ka) with the aim of understanding the history of the Indian Monsoon and the climate of the Arabian Sea region. This was accomplished through the use of paired Mg/Ca and δ18O measurements of the planktonic foraminifer Globigerinoides ruber. By analyzing basin-wide changes and changes in cross-basinal gradients, we assess both monsoonal and regional-scale climate changes. SST was colder than present for the majority of sites within all three paleotime slices. Furthermore, both the Indian Monsoon and the regional Arabian Sea mean climate have varied substantially over the past 20 kyr. The 20 ka and 15 ka time slices exhibit average negative temperature anomalies of 2.5°–3.5°C attributable, in part, to the influences of glacial atmospheric CO2 concentrations and large continental ice sheets. The elimination of the cross-basinal SST gradient during these two time slices likely reflects a decrease in summer monsoon and an increase in winter monsoon strength. Changes in δ18Ow that are smaller than the δ18O signal due to global ice volume reflect decreased evaporation and increased winter monsoon mixing. SSTs throughout the Arabian Sea were still cooler than present by an average of 1.4°C in the 8 ka time slice. These cool SSTs, along with lower δ18Ow throughout the basin, are attributed to stronger than modern summer and winter monsoons and increased runoff and precipitation. The results of this study underscore the importance of taking a spatial approach to the reconstruction of processes such as monsoon upwelling.
    Description: Analyses were funded by a SGER grant from the NSF (OCE03–34598). Funding was also provided by a Schlanger Ocean Drilling Program Fellowship (to K.A.D.) and NSF Grant OCE02–20776 (to D.W.O.). 16
    Keywords: Arabian Sea ; Mg/Ca ; Indian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q10N03, doi:10.1029/2005GC001226.
    Description: The geostrophic shear associated with the meridional overturning circulation is reflected in the difference in density between the eastern and western margins of the ocean basin. Here we examine how the density difference across 30°S in the upper 2 km of the Atlantic Ocean (and thus the magnitude of the shear associated with the overturning circulation) has changed between the last glacial maximum and the present. We use oxygen isotope measurements on benthic foraminifera to reconstruct density. Today, the density in upper and intermediate waters along the eastern margin in the South Atlantic is greater than along the western margin, reflecting the vertical shear associated with the northward flow of surface and intermediate waters and the southward flowing North Atlantic Deep Waters below. The greater density along the eastern margin is reflected in the higher δ 18O values for surface sediment benthic foraminifera than those found on the western margin for the upper 2 km. For the last glacial maximum the available data indicate that the eastern margin foraminifera had similar δ 18O to those on the western margin between 1 and 2 km and that the gradient was reversed relative to today with the higher δ 18O values in the western margin benthic foraminifera above 1 km. If this reversal in benthic foraminifera δ 18O gradient reflects a reversal in seawater density gradient, these data are not consistent with a vigorous but shallower overturning cell in which surface waters entering the Atlantic basin are balanced by the southward export of Glacial North Atlantic Intermediate Water.
    Description: This work was supported by NSF award OCE-9984989/OCE-0428803 to J.L.-S., NSF award OCE-9986748 to D.W.O. and W.B.C., NSF OCE-0222111 to C.D.C., and SEGRF fellowship at LLNL to J.M.
    Keywords: Last Glacial Maximum ; South Atlantic ; Meridional overturning circulation ; Oxygen isotopes ; Benthic foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 994101 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L11703, doi:10.1029/2009GL038677.
    Description: Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (〈1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (〈0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.
    Description: This work was supported by NSF grants OCE 0623364 and ATM 033746 as well as the student research fund of MIT’s Department of Earth, Atmospheric and Planetary Science.
    Keywords: Climate ; ITCZ ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 146–160, doi:10.1002/2016PA002976.
    Description: Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P 〈 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
    Description: NSF Graduate Research Fellowships Grant Numbers: NSF-OCE-1338320, NSF-OCE-1031971, NSF-OCE-0926986; WHOI Access to the Sea Grant Numbers: 27500056, 0734826; NSF HRD; UPR Central Administration to EAHD through the Center for Applied Tropical Ecology and Conservation of UPR
    Description: 2017-08-16
    Keywords: Coral ; Temperature ; Paleoceangraphy ; Paleothermometry ; Global warming ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4005, doi:10.1029/2004PA001061.
    Description: Detailed deglacial and Holocene records of planktonic δ18O and Mg/Ca–based sea surface temperature (SST) from the Okinawa Trough suggest that at ∼18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.
    Description: Funding for this research was provided by NSFC (grants 40106006 and 40206007), SKLLQG (grant LLQG0204), and the NSF (OCE-020776 to DWO). Y.S.'s visit to WHOI was supported via a NSF START Fellowship.
    Keywords: Okinawa Trough ; Deglaciation ; Holocene ; Kuroshio Current ; East Asian monsoon ; Mg/Ca ; Oxygen isotopes ; Foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA3102, doi:10.1029/2007PA001572.
    Description: We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm a−1. Derived Sr/Ca–sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol mol−1, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca–SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol mol−1) = 11.82 (±0.13) – 0.058 (±0.004) × ext (mm a−1) – 0.092 (±0.005) × SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca–SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca–SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were 〉5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca–SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.
    Description: This work was funded by National Science Foundation (NSF) grant OCE- 0402728, the WHOI Ocean and Climate Change Institute, and an NSF Graduate Student Fellowship.
    Keywords: Coral ; Strontium/calcium ; Growth rate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 11075-11080, doi: 10.1073/pnas.1704512114.
    Description: The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ~1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
    Description: This work is supported by the U.S. NSF P2C2 projects (1401778 and 1401802) and OCE projects (1600080 and 1566432), China NSFC 41630527, and the Wisconsin Alumni Research Foundation
    Keywords: Atlantic water masses ; Last deglaciation ; Oxygen isotopes ; Deep ocean warming
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA3219, doi:10.1029/2011PA002132.
    Description: Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ∼50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ∼75 m, 75–100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.
    Description: This project was funded by the German Ministry of Education and Research (BMBF project PABESIA) and the “Deutsche Forschungsgemeinschaft” (DFG project HE 3412/15–1).
    Keywords: Indian Ocean ; Mg/Ca ; Alkenone ; Oxygen isotopes ; Planktic foraminifera ; Thermal structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): D19108, doi:10.1029/2012JD018060.
    Description: Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September–November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian
    Description: J. Tierney acknowledges the NOAA Climate and Global Change Postdoctoral Fellowship for support.
    Description: 2013-04-04
    Keywords: Holocene climate ; Indian monsoon ; Indo-Pacific warm pool ; Leaf waxes ; Stable isotopes ; Walker circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...