ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Marine Science 5 (2013):525-533, doi:10.1146/annurev-marine-121211-172331.
    Description: For more than a decade there has been controversy in oceanography regarding the metabolic state of the oligotrophic gyres of the open sea. Here we review background on this controversy, commenting on several issues to set the context for a moderated debate between two groups of scientists. In a companion paper, Williams et al (2013) take the view that the oligotrophic subtropical gyres of the global ocean exhibit a state of net autotrophy, that is, the gross primary production (GPP) exceeds community respiration (R), when averaged over some suitably extensive region and over a long duration. Duarte et al (2013) take the opposite view, that the oligotrophic subtropical gyres are net heterotrophic, with R exceeding the GPP. This idea -- that large, remote areas of the upper ocean could be net heterotrophic raises of host of fundamental scientific questions about the metabolic processes of photosynthesis and respiration that underlie ocean ecology and global biogeochemistry. The question remains unresolved, in part, because the net state is finely balanced between large opposing fluxes and most current measurements have large uncertainties. This challenging question must be studied against the background of large, anthropogenically-driven changes in ocean ecology and biogeochemistry Current trends of anthropogenic change make it an urgent problem to solve and also greatly complicate finding that solution.
    Description: The authors acknowledge support from the U.S. National Science Foundation through the Center for Microbial Oceanography Research and Education (C-MORE), an NSF Science and Technology Center (EF-0424599), and NSF award OPP 0823101 (Palmer LTER) from the Antarctic Organisms and Ecosystems Program.
    Keywords: Net heterotrophy ; Net autotrophy ; Net community production ; Oligotrophic gyres ; Oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 118 (2013): 385–399, doi:10.1002/jgrg.20032.
    Description: The sea-air biological O2 flux assessed from measurements of surface O2 supersaturation in excess of Ar supersaturation (“O2 bioflux”) is increasingly being used to constrain net community production (NCP) in the upper ocean mixed layer. In making these calculations, one generally assumes that NCP is at steady state, mixed layer depth is constant, and there is no O2 exchange across the base of the mixed layer. The object of this paper is to evaluate the magnitude of errors introduced by violations of these assumptions. Therefore, we examine the differences between the sea-air biological O2 flux and NCP in the Southern Ocean mixed layer as calculated using two ocean biogeochemistry general circulation models. In this approach, NCP is considered a known entity in the prognostic model, whereas O2 bioflux is estimated using the model-predicted O2/Ar ratio to compute the mixed layer biological O2 saturation and the gas transfer velocity to calculate flux. We find that the simulated biological O2 flux gives an accurate picture of the regional-scale patterns and trends in model NCP. However, on local scales, violations of the assumptions behind the O2/Ar method lead to significant, non-uniform differences between model NCP and biological O2 flux. These errors arise from two main sources. First, venting of biological O2 to the atmosphere can be misaligned from NCP in both time and space. Second, vertical fluxes of oxygen across the base of the mixed layer complicate the relationship between NCP and the biological O2 flux. Our calculations show that low values of O2 bioflux correctly register that NCP is also low (〈10 mmol m−2 day−1), but fractional errors are large when rates are this low. Values between 10 and 40 mmol m−2 day−1 in areas with intermediate mixed layer depths of 30 to 50 m have the smallest absolute and relative errors. Areas with O2 bioflux higher than 30 mmol m−2 day−1 and mixed layers deeper than 40 m tend to underestimate NCP by up to 20 mmol m−2 day−1. Excluding time periods when mixed layer biological O2 is undersaturated, O2 bioflux underestimates time-averaged NCP by 5%–15%. If these time periods are included, O2 bioflux underestimates mixed layer NCP by 20%–35% in the Southern Ocean. The higher error estimate is relevant if one wants to estimate seasonal NCP since a significant amount of biological production takes place when mixed layer biological O2 is undersaturated.
    Description: This work was supported in part by funding from the National Aeronautic and Space Administration (NASA NNX08AF12G) and National Science Foundation (NSF OPP-0823101).
    Keywords: Biological production ; Southern Ocean ; O2/Ar ; Modeling ; Oxygen ; GCM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycle 28 (2014): 538–552, doi:10.1002/2013GB004704.
    Description: The triple oxygen isotopic composition of dissolved oxygen (17Δdis) was added to the ocean ecosystem and biogeochemistry component of the Community Earth System Model, version 1.1.1. Model simulations were used to investigate the biological and physical dynamics of 17Δdis and assess its application as a tracer of gross photosynthetic production (gross oxygen production (GOP)) of O2 in the ocean mixed layer. The model reproduced large-scale patterns of 17Δdis found in observational data across diverse biogeographical provinces. Mixed layer model performance was best in the Pacific and had a negative bias in the North Atlantic and a positive bias in the Southern Ocean. Based on model results, the steady state equation commonly used to calculate GOP from tracer values overestimated the globally averaged model GOP by 29%. Vertical entrainment/mixing and the time rate of change of 17Δdis were the two largest sources of bias when applying the steady state method to calculate GOP. Entrainment/mixing resulted in the largest overestimation in midlatitudes and during summer and fall and almost never caused an underestimation of GOP. The tracer time rate of change bias resulted both in underestimation of GOP (e.g., during spring blooms at high latitudes) and overestimation (e.g., during the summer following a bloom). Seasonally, bias was highest in the fall (September-October-November in the Northern Hemisphere, March-April-May in the Southern), overestimating GOP by 62%, globally averaged. Overall, the steady state method was most accurate in equatorial and low-latitude regions where it estimated GOP to within ±10%. Field applicable correction terms are derived for entrainment and mixing that capture 86% of model vertical bias and require only mixed layer depth history and triple oxygen isotope measurements from two depths.
    Description: We acknowledge support from Center for Microbial Oceanography Research and Education (CMORE) (NSF EF-0424599) and NOAA Climate Program Office (NA 100AR4310093).
    Description: 2014-11-23
    Keywords: Primary production ; Triple oxygen isotope ; Photosynthesis ; Gross primary production ; Carbon ; Oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...