ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Antioxidant (enzyme complex) ; Citrus ; Fatty acid ; Phospholipid hydroperoxide glutathione peroxidase ; Oxidative stress ; Salt stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative stress, namely SOD, glutathione reductase and PHGPX, are essentially similar.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Abscisic acid ; Antioxidant ; Citrus (salt stress) ; Oxidative stress ; Phospholipid hydroperoxide glutathione peroxidase ; Salt stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Recent findings in our laboratory showed that in citrus cells, salt treatment induced the accumulation of mRNA and a protein corresponding to phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system. The protein and its encoding gene, csa, were isolated and characterized, and the expected enzymatic activity was demonstrated (G. Ben-Hayyim et al., 1993, Plant Sci. 88: 129–140; D. Holland et al., 1993, Plant Mol. Biol. 21: 923–927; D. Holland et al., 1994, FEBS Lett. 337: 52–55; T. Beeor-Tzahar et al., 1995, FEBS Lett. 366: 151–155). In an attempt to find out how salt induces the expression of an antioxidant enzyme, the regulation of PHGPX in citrus cells was studied at both the mRNA transcript and the protein levels. A high and transient response at the csa mRNA level was observed after 4–7 h of exposing salt-sensitive cells to NaCl, or abscisic acid, whereas no response could be detected in the salt-tolerant cells under the same conditions. tert-Butylhydroperoxide, a substrate of PHGPX, induced csa mRNA transcripts after only 2 h, and abolished the differential response between salt-sensitive and salt-tolerant cells. On the basis of these results and those obtained under heat and cold stresses, it is suggested that csa is directly induced by the substrate of its encoded enzyme PHGPX, and that salt induction occurs mainly via the production of reactive oxygen species and hydroperoxides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...