ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-27
    Description: Amphotericin B is the archetype for small molecules that form transmembrane ion channels. However, despite extensive study for more than five decades, even the most basic features of this channel structure and its contributions to the antifungal activities of this natural product have remained unclear. We herein report that a powerful series of functional group-deficient probes have revealed many key underpinnings of the ion channel and antifungal activities of amphotericin B. Specifically, in stark contrast to two leading models, polar interactions between mycosamine and carboxylic acid appendages on neighboring amphotericin B molecules are not required for ion channel formation, nor are these functional groups required for binding to phospholipid bilayers. Alternatively, consistent with a previously unconfirmed third hypothesis, the mycosamine sugar is strictly required for promoting a direct binding interaction between amphotericin B and ergosterol. The same is true for cholesterol. Synthetically deleting this appendage also completely abolishes ion channel and antifungal activities. All of these results are consistent with the conclusion that a mycosamine-mediated direct binding interaction between amphotericin B and ergosterol is required for both forming ion channels and killing yeast cells. The enhanced understanding of amphotericin B function derived from these synthesis-enabled studies has helped set the stage for the more effective harnessing of the remarkable ion channel-forming capacity of this prototypical small molecule natural product.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-27
    Description: Modern drug discovery efforts rely, to a large extent, on lead compounds from two classes of small organic molecules; namely, natural products (i.e., secondary metabolites) and designed compounds (i.e., synthetic molecules). In this article, we demonstrate how these two domains of lead compounds can be merged through total synthesis and molecular design of analogs patterned after the targeted natural products, whose promising biological properties provide the motivation. Specifically, the present study targeted the naturally occurring biyouyanagins A and B and their analogs through modular chemical synthesis and led to the discovery of small organic molecules possessing anti-HIV and anti-arenavirus properties.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-27
    Description: Structurally diverse libraries of novel small molecules represent important sources of biologically active agents. In this paper we report the development of a diversity-oriented synthesis strategy for the generation of diverse small molecules based around a common macrocyclic peptidomimetic framework, containing structural motifs present in many naturally occurring bioactive compounds. Macrocyclic peptidomimetics are largely underrepresented in current small-molecule screening collections owing primarily to synthetic intractability; thus novel molecules based around these structures represent targets of significant interest, both from a biological and a synthetic perspective. In a proof-of-concept study, the synthesis of a library of 14 such compounds was achieved. Analysis of chemical space coverage confirmed that the compound structures indeed occupy underrepresented areas of chemistry in screening collections. Crucial to the success of this approach was the development of novel methodologies for the macrocyclic ring closure of chiral α-azido acids and for the synthesis of diketopiperazines using solid-supported N methylmorpholine. Owing to their robust and flexible natures, it is envisaged that both new methodologies will prove to be valuable in a wider synthetic context.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-27
    Description: National Institutes of Health (NIH)-sponsored screening centers provide academic researchers with a special opportunity to pursue small-molecule probes for protein targets that are outside the current interest of, or beyond the standard technologies employed by, the pharmaceutical industry. Here, we describe the outcome of an inhibitor screen for one such target, the enzyme protein phosphatase methylesterase-1 (PME-1), which regulates the methylesterification state of protein phosphatase 2A (PP2A) and is implicated in cancer and neurodegeneration. Inhibitors of PME-1 have not yet been described, which we attribute, at least in part, to a dearth of substrate assays compatible with high-throughput screening. We show that PME-1 is assayable by fluorescence polarization-activity-based protein profiling (fluopol-ABPP) and use this platform to screen the 300,000+ member NIH small-molecule library. This screen identified an unusual class of compounds, the aza-β-lactams (ABLs), as potent (IC50 values of approximately 10 nM), covalent PME-1 inhibitors. Interestingly, ABLs did not derive from a commercial vendor but rather an academic contribution to the public library. We show using competitive-ABPP that ABLs are exquisitely selective for PME-1 in living cells and mice, where enzyme inactivation leads to substantial reductions in demethylated PP2A. In summary, we have combined advanced synthetic and chemoproteomic methods to discover a class of ABL inhibitors that can be used to selectively perturb PME-1 activity in diverse biological systems. More generally, these results illustrate how public screening centers can serve as hubs to create spontaneous collaborative opportunities between synthetic chemistry and chemical biology labs interested in creating first-in-class pharmacological probes for challenging protein targets.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-21
    Description: Early in 1995, an earthquake struck Japan measuring 7.3 on the Richter scale (1). The shaking lasted for 20 seconds. Asphalt roads looked like shattered peanut brittle and whole neighborhoods crumpled to the ground. Nearly 6,400 people lost their lives, and more than 300,000 people were left homeless. A giant...
    Keywords: Core Concepts
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-22
    Description: Atomic microscopy, done using dynamic TEMs such as this one, have the potential to help materials scientists to optimize reactions in areas ranging from battery design to medical research. Image courtesy of Pacific Northwest National Laboratory. DTEM will capture extremely quick-succession images of atoms as they interact at solid–solid, solid–liquid,...
    Keywords: Core Concepts
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-04-27
    Description: In Biology Oriented Synthesis the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is met by the structurally complex scaffolds of natural products (NPs) selected in evolution. The synthesis of NP-inspired compound collections approaching the complexity of NPs calls for the development of efficient synthetic methods. We have developed a one pot 4–7 step synthesis of mono-, bi-, and tricyclic oxepanes that resemble the core scaffolds of numerous NPs with diverse bioactivities. This sequence entails a ring-closing ene-yne metathesis reaction as key step and makes productive use of polymer-immobilized scavenger reagents. Biological profiling of a corresponding focused compound collection in a reporter gene assay monitoring for Wnt-signaling modulation revealed active Wntepanes. This unique class of small-molecule activators of the Wnt pathway modulates the van-Gogh-like receptor proteins (Vangl), which were previously identified in noncanonical Wnt signaling, and acts in synergy with the canonical activator protein (Wnt-3a).
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-27
    Description: Fragment-based drug discovery (FBDD) has proven to be an effective means of producing high-quality chemical ligands as starting points for drug-discovery pursuits. The increasing number of clinical candidate drugs developed using FBDD approaches is a testament of the efficacy of this approach. The success of fragment-based methods is highly dependent on the identity of the fragment library used for screening. The vast majority of FBDD has centered on the use of sp2-rich aromatic compounds. An expanded set of fragments that possess more 3D character would provide access to a larger chemical space of fragments than those currently used. Diversity-oriented synthesis (DOS) aims to efficiently generate a set of molecules diverse in skeletal and stereochemical properties. Molecules derived from DOS have also displayed significant success in the modulation of function of various “difficult” targets. Herein, we describe the application of DOS toward the construction of a unique set of fragments containing highly sp3-rich skeletons for fragment-based screening. Using cheminformatic analysis, we quantified the shapes and physical properties of the new 3D fragments and compared them with a database containing known fragment-like molecules.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-04-27
    Description: The synthesis of γ-lactams that are unsubstituted at the 1-position (nitrogen) as well as their subsequent N-functionalization is reported. A recently discovered four-component reaction (4CR) is employed with either an ammonia precursor or a protected form of ammonia that can be deprotected in a subsequent synthetic step. These methods represent the first multicomponent assembly of complex lactam structures that are unsubstituted at nitrogen. In addition, two methods for the introduction of nitrogen substituents that are not possible through the original 4CR are reported. X-ray crystallographic analysis of representative structures reveals conformational changes in the core structure that will enable future deployment of this chemistry in the design and synthesis of diverse collections of lactams suitable for the discovery of new biological probes.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-27
    Description: The endothelium plays a critical role in promoting inflammation in cardiovascular disease and other chronic inflammatory conditions, and many small-molecule screens have sought to identify agents that prevent endothelial cell activation. Conversely, an augmented immune response can be protective against microbial pathogens and in cancer immunotherapy. Yet, small-molecule screens to identify agents that induce endothelial cell activation have not been reported. In this regard, a bioassay was developed that identifies activated endothelium by its capacity to trigger macrophage inflammatory protein 1 beta from primary monocytes. Subsequently, a 642-compound library of 39 distinctive scaffolds generated by a diversity-oriented synthesis based on the nucleophilic phosphine catalysis was screened for small molecules that activated the endothelium. Among the active compounds identified, the major classes were synthesized through the sequence of phosphine-catalyzed annulation, Tebbe reaction, Diels–Alder reaction, and in some cases, hydrolysis. Ninety-six analogs of one particular class of compounds, octahydro-1,6-naphthyridin-4-ones, were efficiently prepared by a solid-phase split-and-pool technique and by solution phase analog synthesis. Structure-function analysis combined with transcriptional profiling of active and inactive octahydro-1,6-naphthyridin-4-one analogs identified inflammatory gene networks induced exclusively by the active compound. The identification of a family of chemical probes that augment innate immunity through endothelial cell activation provides a framework for understanding gene networks involved in endothelial inflammation as well as the development of novel endothelium-driven immunotherapeutic agents.
    Keywords: Organic Synthesis Toward Small-Molecule Probes and Drugs Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...