ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 80 (1996), S. 375-388 
    ISSN: 1570-7458
    Keywords: Oreina ; Chrysomelidae ; viviparity ; offspring size ; fecundity ; maternal investment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In five species of the genus Oreina Chevrolat (Coleoptera, Chrysomelidae) we compared the size of offspring, the fecundity of the females, the timing of offspring production and female investment over the season. Two of the species, O. elongata and O. luctuosa, laid eggs, while O. cacaliae, O. gloriosa and O. variabilis gave birth to larvae. Offspring size corrected for female size was similar in the two oviparous species and in the viviparous O. cacaliae. In the two other viviparous species the larvae were two to three times bigger in relation to the female. The greater size of the offspring was not traded off for lower fecundity in these latter two species, yet the production of bigger larvae was associated with a longer laying period and thereby a spreading of reproductive investment over the season. The prediction of life history theory that higher investment in individual offspring should be traded off for lower fecundity could not be confirmed. The investigation of egg and larval development showed that in one of the oviparous species, O. luctuosa, the length of the egg stage was more variable. This corroborates the view that in this species the eggs can be retained for varying times before being laid. Greater size at birth does not necessarily lead to shortened developmental times: the larval periods of O. cacaliae, O. elongata, O. gloriosa and O. variabilis were all comparable although the larvae of the first two species were relatively smaller when laid; only the small larvae of O. luctuosa needed significantly longer for their development. For all growth parameters examined the differences between species were larger than the differences between populations. A comparison of larval growth of the oligophagous species O. cacaliae on three plant genera showed that larval growth rate is influenced by the food plant. However, the plant on which the larvae grew worst is apparently not chosen for oviposition in the field. A comparison with a phylogeny of the species based on allozymes suggests that species with similar reproductive parameters are closely related, yet that viviparity evolved independently in O. cacaliae on one hand and O. variabilis and O. gloriosa on the other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1570-7458
    Keywords: pyrrolizidine alkaloids ; seneciphylline N-oxide ; Oreina ; Chrysomelidae ; leaf beetles ; defensive secretion ; sequestration ; host-plant influence ; Adenostyles leucophylla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Oreina cacaliae (Coleoptera, Chrysomelidae) produces in its elytral and pronotal defensive secretion seneciphylline N-oxide together with small amounts of another pyrrolizidine alkaloid tentatively identified as senecionine N-oxide. This is a strong departure from the chemical composition of the defensive secretions in related species, characterized by complex mixtures of cardenolides, synthesized by the beetles from cholesterol. It is suggested that O. cacaliae sequesters the alkaloids from its host-plant, Adenostyles leucophylla. Other specimens of O. cacaliae from far distant populations feeding on Senecio nemorensis, Petasites paradoxus or P. album also produced pyrrolizidine alkaloids, but not O. speciosissima feeding on the same food plants and producing cardenolides. In addition to pyrrolizidine alkaloids, O. cacaliae secretes ethanolamine, which is also found in all the cardenolide-producing species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1420-9071
    Keywords: Oreina ; Chrysomelidae ; chemical defense ; cardenolides ; tyrosine betaine ; quantitative variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Tyrosine betaine, four new cardenolides (4, 5, 6, and7) and three known cardenolides (2, 3, and8) were isolated from the defensive secretion, of the leaf beetleOreina gloriosa and their chemical structure determined. 16 secretion components of individual beetles were quantified. Secretion composition of field-collected beetles was affected by season, sex and body weight.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...