ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.
    Keywords: Optics
    Type: NPO-43806 , NASA Tech Briefs, May 2009; 29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Passive multiangular, multispectral, and polarimetric sensing approaches each have unique strengths for the measurement of tropospheric aerosol column abundances and microphysical properties. Current spaceborne multispectral and multiangular aerosols sensors operate at approximately 1 km resolution. Under NASA's Instrument Incubator Program, we are developing an electro-optic imaging approach that will enable adding high-accuracy polarimetry to such observations. To achieve a degree of linear polarization (DOLP) uncertainty of 0.5%, our approach temporally modulates the linear-polarization component of incoming light at a rapid rate, enabling each detector within a focal-plane array, combined with polarization analyzers, to measure the relative proportions of the linear Stokes components Q or U to the total intensity. Our system uses tandem photoelastic modulators (PEMs) within a high-reflectance, low diattenuation camera design. The two PEMs vibrate at slightly different resonant frequencies, leading to modulation of the polarized light at a heterodyne frequency of ~25 Hz. High-speed (1 kHz) readout of the detector arrays samples the output waveforms from which Q/I and U/I are derived. We report on experimental and theoretical analyses of PEM and optical system performance, along with plans for developing ruggedized PEMs capable of withstanding launch and on-orbit stresses.
    Keywords: Optics
    Type: 2006 Earth Science Technology Conference (ESTC-06)2006; Jun 26, 2006; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...