ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-04-17
    Description: The availability of iron is known to exert a controlling influence on biological productivity in surface waters over large areas of the ocean and may have been an important factor in the variation of the concentration of atmospheric carbon dioxide over glacial cycles. The effect of iron in the Southern Ocean is particularly important because of its large area and abundant nitrate, yet iron-enhanced growth of phytoplankton may be differentially expressed between waters with high silicic acid in the south and low silicic acid in the north, where diatom growth may be limited by both silicic acid and iron. Two mesoscale experiments, designed to investigate the effects of iron enrichment in regions with high and low concentrations of silicic acid, were performed in the Southern Ocean. These experiments demonstrate iron's pivotal role in controlling carbon uptake and regulating atmospheric partial pressure of carbon dioxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coale, Kenneth H -- Johnson, Kenneth S -- Chavez, Francisco P -- Buesseler, Ken O -- Barber, Richard T -- Brzezinski, Mark A -- Cochlan, William P -- Millero, Frank J -- Falkowski, Paul G -- Bauer, James E -- Wanninkhof, Rik H -- Kudela, Raphael M -- Altabet, Mark A -- Hales, Burke E -- Takahashi, Taro -- Landry, Michael R -- Bidigare, Robert R -- Wang, Xiujun -- Chase, Zanna -- Strutton, Pete G -- Friederich, Gernot E -- Gorbunov, Maxim Y -- Lance, Veronica P -- Hilting, Anna K -- Hiscock, Michael R -- Demarest, Mark -- Hiscock, William T -- Sullivan, Kevin F -- Tanner, Sara J -- Gordon, R Mike -- Hunter, Craig N -- Elrod, Virginia A -- Fitzwater, Steve E -- Jones, Janice L -- Tozzi, Sasha -- Koblizek, Michal -- Roberts, Alice E -- Herndon, Julian -- Brewster, Jodi -- Ladizinsky, Nicolas -- Smith, Geoffrey -- Cooper, David -- Timothy, David -- Brown, Susan L -- Selph, Karen E -- Sheridan, Cecelia C -- Twining, Benjamin S -- Johnson, Zackary I -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):408-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039-9647, USA. coale@mlml.calstate.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087542" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis/*metabolism ; Carbon Dioxide/analysis/metabolism ; Chlorophyll/analysis ; Diatoms/growth & development/metabolism ; Ecosystem ; *Iron/analysis/metabolism ; Nitrates/analysis/metabolism ; Nitrogen/analysis/metabolism ; Oceans and Seas ; Photosynthesis ; Phytoplankton/*growth & development/metabolism ; Seawater/chemistry ; *Silicic Acid/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-09
    Description: Solar radiation absorbed by marine phytoplankton can follow three possible paths. By simultaneously measuring the quantum yields of photochemistry and chlorophyll fluorescence in situ, we calculate that, on average, ~60% of absorbed photons are converted to heat, only 35% are directed toward photochemical water splitting, and the rest are reemitted as fluorescence. The spatial pattern of fluorescence yields and lifetimes strongly suggests that photochemical energy conversion is physiologically limited by nutrients. Comparison of in situ fluorescence lifetimes with satellite retrievals of solar-induced fluorescence yields suggests that the mean values of the latter are generally representative of the photophysiological state of phytoplankton; however, the signal-to-noise ratio is unacceptably low in extremely oligotrophic regions, which constitute 30% of the open ocean.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Hanzhi -- Kuzminov, Fedor I -- Park, Jisoo -- Lee, SangHoon -- Falkowski, Paul G -- Gorbunov, Maxim Y -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):264-7. doi: 10.1126/science.aab2213. Epub 2016 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, USA. ; Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-Gu, Incheon, Republic of Korea. ; Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, USA. Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26743625" target="_blank"〉PubMed〈/a〉
    Keywords: Chlorophyll/chemistry/*metabolism ; Energy Metabolism ; *Fluorescence ; Oceans and Seas ; *Photons ; *Photosynthesis ; Phytoplankton/chemistry/*metabolism ; Signal-To-Noise Ratio ; *Solar Energy ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...