ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oceanography  (8)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-12
    Description: The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities
    Keywords: Oceanography
    Type: NASA/TM-2002-210006/Vol. 2 , GSFC.TM.5486.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Knowing the spatial and temporal distribution of the underwater light field, i.e., the spectral and angular structure of the radiant intensity at any point in the water column, is essential to understanding the biogeochemical processes that control the composition and evolution of aquatic ecosystems and their impact on climate and reaction to climate change. At present, only a few properties are reliably retrieved from space, either directly or via water-leaving radiance. Existing satellite products are limited to planar photosynthetically available radiation (PAR) and ultraviolet (UV) irradiance above the surface and diffuse attenuation coefficient. Examples of operational products are provided, and their advantages and drawbacks are examined. The usefulness and convenience of these products notwithstanding, there is a need, as expressed by the user community, for other products, i.e., sub-surface planar and scalar fluxes, average cosine, spectral fluxes (UV to visible), diurnal fluxes, absorbed fraction of PAR by live algae (APAR), surface albedo, vertical attenuation, and heating rate, and for associating uncertainties to any product on a pixel-by-pixel basis. Methodologies to obtain the new products are qualitatively discussed in view of most recent scientific knowledge and current and future satellite missions, and specific algorithms are presented for some new products, namely sub-surface fluxes and average cosine. A strategy and roadmap (short, medium, and long term) for usage and development priorities is provided, taking into account needs and readiness level. Combining observations from satellites overpassing at different times and geostationary satellites should be pursued to improve the quality of daily-integrated radiation fields, and products should be generated without gaps to provide boundary conditions for general circulation and biogeochemical models. Examples of new products, i.e., daily scalar PAR below the surface, daily average cosine for PAR, and sub-surface spectral scalar fluxes are presented. A procedure to estimate algorithm uncertainties in the total uncertainty budget for above-surface daily PAR, based on radiative simulations for expected situations, is described. In the future, space-borne lidars with ocean profiling capability offer the best hope for improving our knowledge of sub-surface fields. To maximize temporal coverage, space agencies should consider placing ocean-color instruments in L1 orbit, where the sunlit part of the Earth can be frequently observed.
    Keywords: Oceanography
    Type: GSFC-E-DAA-TN57031 , Frontiers in Marine Science (e-ISSN 2296-7745); 5; 3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: A collaborative measurement program for evaluating satellite-derived ocean color has been developed based on ships of opportunity (merchant, oceanographic) and specific instrumentation, the SIMBAD radiometer. The purpose of the measurement program is to complement, in a cost-effective way, dedicated evaluation experiments at sea, which are expensive, cannot be carried out over the full range of expected oceanic and atmospheric conditions, and generally provide a few match-ups. Ships participate in the program on a volunteer basis or at a very small cost, and measurement procedures do not interfere with other ship activities. The SIMBAD radiometer is a portable, easy-to-operate instrument that measures the basic ocean color variables, namely aerosol optical thickness and water-leaving radiance, in typical spectral bands of ocean-color sensors, i.e., 443, 490, 560, 670, and 870 nm. Measuring these variables at the time of satellite overpass is usually sufficient to verify satellite-derived ocean color and to evaluate atmospheric correction algorithms. Any ordinary crew can learn quickly how to make measurements. Importantly, the ship is not required to stop, making it possible to collect data along regular routes traveled by merchant ships in the world's oceans.
    Keywords: Oceanography
    Type: SIMBIOS Project; 71-79; NASA/TM-2001-209976
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: During the 3.25 years of the project, various aspects of satellite ocean-color remote sensing were investigated, including effect of whitecaps on atmospheric correction, validity of aerosol models, and evaluation of ocean-color products. Algorithms to estimate pigment concentration and photo-synthetically active radiation (PAR) were developed, and studies of geophysical phenomena, such as the 1998 Asian Dust event, were performed. The influence of solar radiation absorption by phytoplankton on mixed layer dynamics, ocean circulation, and climate was also investigated. The project's results and findings are described.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The spectral reflectance of oceanic whitecaps in the visible and near infrared was investigated using high-altitude, 20 m resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measurements off the Southern California coast. The whitecap effect on surface reflectance was expressed as a function of the difference between the reflectance of pixels contaminated by whitecaps and of adjacent pixels free of whitecaps. Whitecap reflectance was found to decrease substantially in the near infrared, by about 40% at 850 nm and 80% at 1,600 nm, in agreement with previous measurements in the coastal zone and the open ocean. The spectral dependence of whitecap reflectance appears to be fairly independent of environmental conditions, making it easy to take into account the resulting and significant effects in ocean color and aerosol remote sensing algorithms.
    Keywords: Oceanography
    Type: Hyperspectral Remote Sensing of the Ocean; ime 4154; 41-48
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: As a result of the Earth Observing System (EOS) restructuring exercise during the last half of fiscal year 1994, the EOS Color mission, which was scheduled to be a data-buy with a 1998 launch was dropped from the EOS mission manifest primarily because of the number of international ocean color missions scheduled for launch in the 1998 time frame. In lieu of a new mission, NASA Goddard Space Flight Center (GSFC) was tasked by NASA Headquarters to develop an ocean color satellite calibration and validation plan for multiple sensors. The objective of the activity was to develop a methodology and operational capability to combine data products from the various ocean color missions in a manner that ensures the best possible global coverage and data quality. The program was called the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project coined from the biological term "symbiosis." This document is the original proposal that was developed and submitted in May 1995. SIMBIOS was approved in 1996 and initiated in 1997 with a project office and technical staff at GSFC and a science team to assist in the development of validation data sets, sensor calibration, atmospheric correction, and bio-optical and data merger algorithms. Since its inception, the SIMBIOS program has resulted in a broad-based international collaboration on the calibration and validation of a number of ocean color satellites.
    Keywords: Oceanography
    Type: NASA/TM-2002?210008 , Rept-000137 , NAS 1.15:210008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: The investigation s main objective is to collect from platforms of opportunity (merchant ships, research vessels) concomitant normalized water-leaving radiance and aerosol optical thickness data over the world s oceans. A global, long-term data set of these variables is needed to verify whether satellite retrievals of normalized water-leaving radiance are within acceptable error limits and, eventually, to adjust atmospheric correction schemes. To achieve this objective, volunteer officers, technicians, and scientists onboard the selected ships collect data from portable SIMBAD and Advanced SIMBAD (SIMBADA) radiometers. These instruments are specifically designed for evaluation of satellite-derived ocean color. They measure radiance in spectral bands typical of ocean-color sensors. The SIMBAD version measures in 5 spectral bands centered at 443, 490, 560, 670, and 870 nm, and the Advanced SIMBAD version in 11 spectral bands centered at 350, 380, 412, 443, 490, 510, 565, 620, 670, 750, and 870 nm. Aerosol optical thickness is obtained by viewing the sun disk like a classic sun photometer. Normalized water-leaving radiance, or marine reflectance, is obtained by viewing the ocean surface through a vertical polarizer in a specific geometry (nadir angle of 45o and relative azimuth angle of 135deg) to minimize direct sun glint and reflected sky radiation. The SIMBAD and SIMBADA data, after proper quality control and processing, are delivered to the SIMBIOS project office for inclusion in the SeaBASS archive. They complement data collected in a similar way by the Laboratoire d'Optique Atmospherique of the University of Lille, France. The SIMBAD and SIMBADA data are used to check the radiometric calibration of satellite ocean-color sensors after launch and to evaluate derived ocean-color variables (i.e., normalized water-leaving radiance, aerosol optical thickness, and aerosol type). Analysis of the SIMBAD and SIMBADA data provides information on the accuracy of satellite retrievals of normalized water-leaving radiance, an understanding of the discrepancies between satellite and in situ data, and algorithms that reduce the discrepancies, contributing to more accurate and consistent global ocean color data sets.
    Keywords: Oceanography
    Type: SIMBIOS Project; 2003 Annual Report; 52-72; NASA/TM-2003-212251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-16
    Description: Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.
    Keywords: Oceanography
    Type: NASA/CR-1997-208029 , NAS 1.26:208029
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...