ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology; air-sea fluxes of heat, freshwater, and momentum; and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the 2008 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 8 WHOI surface mooring that had been deployed in October 2007, deployment of a new (Stratus 9) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. A buoy for the Pacific tsunami warning system was also serviced in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2008 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Ronald H. Brown (Ship) Cruise RB08-06 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and January. A NOAA vessel was not available, so this cruise was conducted on the chartered ship, Moana Wave, belonging to Stabbert Maritime. During the 2011 cruise on the Moana Wave to the ORS Stratus site, the primary activities were the recovery of the subsurface part of the Stratus 10 WHOI surface mooring, deployment of a new (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship by staff of the NOAA Earth System Research Laboratory (ESRL), and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. The Stratus 10 mooring had parted, and the surface buoy and upper part had been recovered earlier. Underway CTD (UCTD) profiles were collected along the track and during surveys dedicated to investigating eddy variability in the region. Surface drifters and subsurface floats were also launched along the track. The intent was also to visit a buoy for the Pacific tsunami warning system maintained by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). This DART (Deep- Ocean Assessment and Reporting of Tsunami) buoy had been deployed in December 2010.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA0900AR4320129
    Keywords: Moana Wave (Ship) Cruise Stratus 11 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually. A NOAA vessel was not available, so this cruise was conducted on the Melville, operated by the Scripps Institution of Oceanography. During the 2012 cruise on the Melville to the ORS Stratus site, the primary activities were the deployment of the Stratus 12 WHOI surface mooring, recovery of the previous (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Underway CTD (UCTD) profiles were collected along the track. Surface drifters and subsurface floats were also launched along the track.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129.
    Keywords: Melville (Ship) Cruise Stratus 12 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and December. Due to necessary repairs on the electric motors of the ship’s propulsion system, this year the cruise was delayed until January. During the 2009/2010 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were the recovery of the Stratus 9 WHOI surface mooring that had been deployed in October 2008, deployment of a new (Stratus 10) WHOI surface mooring at that site, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship by staff of the NOAA Earth System Research Laboratory (ESRL), and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Both underway CTD (UCTD) profiles and Vertical Microstructure Profiles (VMP) were collected along the track and during surveys dedicated to investigating eddy variability in the region. Surface drifters were also launched along the track. The intent was also to visit a buoy for the Pacific tsunami warning system maintained by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). This DART (Deep- Ocean Assessment and Reporting of Tsunami) buoy had been equipped with IMET sensors and subsurface oceanographic instruments, and a recovery and replacement of the IMET sensors was planned. However, the DART buoy broke free from its mooring on January 3rd and was recovered by the Chilean navy; the work done at that site during this cruise was the recovery of the bottom pressure unit.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Ronald H. Brown (Ship) Cruise RB10-01 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology (air-sea fluxes of heat, freshwater, and momentum), and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises between October and December. During the October 2007 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 7 WHOI surface mooring that had been deployed in October 2006, deployment of a new (Stratus 8) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board the ship by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. Meteorological sensors on a buoy for the Pacific tsunami warning system were also serviced, in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A new DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial pressure of CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2007 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Marine meteorology ; Oceanography ; Ronald H. Brown (Ship) Cruise RB07-09
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Note: author "Ludovic Bariteau" is incorrectly listed as "Bariteau Ludovic" on the Cover and Title Page.
    Description: The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the seventh WHOTS mooring (WHOTS-7) and deployment of the eighth mooring (WHOTS-8). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-8 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 5 July and 13 July 2011. Operations began with deployment of the WHOTS-8 mooring on 6 July. This was followed by meteorological intercomparisons and CTDs. Recovery of WHOTS-7 took place on 11 July 2011. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA090AR4320129 and the Cooperative Institute for the North Atlantic Region (CINAR).
    Keywords: Hi'ialakai (Ship) Cruise WHOTS-7 ; Oceanographic buoys ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: We describe a semiempirical methodology-based on measurements of far-infrared (FIR) lines-that yields information on electron densities in regions where various ionic species exist, effective temperatures (T(sub eff)) for stars ionizing H II regions, and gas-phase heavy element abundances. Although this capability has long been available via optical data, the special features of FIR lines-relative insensitivity to extinction and electron temperature variations-extend the analysis ability. Several line ratios serve as diagnostics of electron density, N(sub e), probing different ionization conditions and different density regimes. The more N(sub e)-diagnostic observations made, the more reliable will be the deciphering of the actual variation in density throughout a nebula. A method to estimate T(sub eff) from the FIR (N III)/(N II) line ratio requires that the nebula be ionization bounded and that substantially all of the flux from the revevant lines be observed. However, to estimate T(sub eff) by a second method that uses the ratio of FIR (S III)/(O III) lines, an ionization-bounded nebula is a sufficient, but not necessary, condition. These restrictions are unnecessary for estimating densities and heavy element abundances. We show that a fairly general determination of metallicity, via the S/H ratio, may be made for H II regions with observations of just two lines-(S III) 19 micron and a hydrogen recombination line (or appropriate substitute). These techniques are applied to recent FIR data for the G333.6-0.2 H II region, including application to the recently measured (N II) 122 and 205 micron lines.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 772-782
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: The molecular, neutral, and ionized hydrogen distributions in the Sbc galaxy M51 (NGC 5194) are compared. To estimate H2 surface densities observations of the CO (J = 1 - 0) transition were made in 60 positions out to a radius of 155 arcsec. Extinction-corrected H-alpha intensities were used to compute the detailed massive star formation rates (MSFRs) in the disk. Estimates of the gas surface density, the MSFR, and the ratio of these quantities, MSFR/sigma(p), were then examined. The spiral arms were found to exhibit an excess gas density, measuring between 1.4 and 1.6 times the interarm values at 45 arcsec resolution. The total (arm and interarm) gas content and massive star formation rates in concentric annuli in the disk of M51 were computed. The two quantities fall off together with radius, yielding a relatively constant MSFR/sigma(p) with radius. This behavior is not explained by current models of star formation in galactic disks.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 356; 135-148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: CO emission has been detected in each of 14 of the IR-bright galaxies listed in IRAS Circular 15; for the nine galaxies of the largest angular size, the CO emission distributions along the major axis have been mapped. A strong correlation is noted between total CO luminosities and IR ones for galaxies in each of three ranges of dust temperature. The ratio of IR/CO luminosities increases with the ratio of 60/100-micron flux densities, consistent with emission of thermal origin at the characteristic temperature given by the dust temperature. If this luminosity ratio is a measure of the emergent stellar luminosity/unit molecular mass, or the efficiency of star formation, this efficiency varies over almost two orders of magnitude from one galaxy to another.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 304; 443-458
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-19
    Description: The first observation of the 26-micron line from singly ionized iron in SN 1987A is reported. The total flux is 4.5 + or - 0.9 x 20 to the -18th W/sq cm. The line width (FWHM) is 4000 + or - 600 km/s. The minimum iron mass is found to be about 0.02 solar, indicating that the emission originates in the heavy element mantle and not in the hydrogen-rich envelope. Since this mass is less than estimates based on near-infrared measurements or the optical light curve, the emission is probably optically thick. In this case, the flux measurement together with the observed line width suggest a temperature of 3500 + or - 1500 K for the mantle. The broad line width suggests that mixing of the ejected iron with lighter elements in overlying layers has occurred.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 330; L39-L41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...