ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean ventilation  (2)
  • 2015-2019  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 425 (2015): 93-104, doi:10.1016/j.epsl.2015.05.025.
    Description: We investigate the radiocarbon ventilation age in deep equatorial Pacific sediment cores using the difference in conventional 14C age between coexisting benthic and planktonic foraminifera, and integrate those results with similar data from around the North Pacific Ocean in a reconstruction for the last glaciation (15 to 25 conventional 14C ka). Most new data from both the Equatorial Pacific and the Emperor Seamounts in the northwestern Pacific come from maxima in abundance of benthic taxa because this strategy reduces the effect of bioturbation. Although there remains considerable scatter in the ventilation age estimates, on average, ventilation ages in the Equatorial Pacific were significantly greater below 3.2 km (~3080 ±1125 yrs, n=15) than in the depth interval 1.9 to 3.0 km (~1610 ± 250 yrs, n=12). When compared to the average modern seawater Δ14C profile for the North Pacific, the Equatorial Pacific glacial data suggest an abyssal front located somewhere between 3.0 and 3.2 km modern water depth. Above that depth, the data may indicate slightly better ventilation than today, and below that depth, glacial Equatorial Pacific data appear to be as old as last glacial maximum (LGM) deep water ages reported for the deep southern Atlantic. This suggests that a glacial reservoir of aged waters extended throughout the circumpolar Southern Ocean and into the Equatorial Pacific. Renewed ventilation of such a large volume of aged (and, by corollary, carbon-rich) water would help to account for the rise in atmospheric pCO2 and the fall in Δ14C as the glaciation drew to a close.
    Description: This work was funded by NSF grants OCE-1031224 and OCE-0424861 to LDK and 0851391 to SJL.
    Keywords: Radiocarbon ; Foraminifera ; Ocean ventilation ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 128-151, doi:10.1002/2017PA003174.
    Description: We present a synthesis of 1,361 deep‐sea radiocarbon data spanning the past 40 kyr and computed (for 14C‐dated records) from the same calibration to atmospheric 14C. The most notable feature in our compilation is a long‐term Δ14C decline in deep oceanic basins over the past 25 kyr. The Δ14C decline mirrors the drop in reconstructed atmospheric Δ14C, suggesting that it may reflect a decrease in global 14C inventory rather than a redistribution of 14C among different reservoirs. Motivated by this observation, we explore the extent to which the deep water Δ14C data jointly require changes in basin‐scale ventilation during the last deglaciation, based on the fit of a 16‐box model of modern ocean ventilation to the deep water Δ14C records. We find that the fit residuals can largely be explained by data uncertainties and that the surface water Δ14C values producing the fit are within the bounds provided by contemporaneous values of atmospheric and deep water Δ14C. On the other hand, some of the surface Δ14C values in the northern North Atlantic and the Southern Ocean deviate from the values expected from atmospheric 14CO2 and CO2 concentrations during the Heinrich Stadial 1 and the Bølling‐Allerød. The possibility that deep water Δ14C records reflect some combination of changes in deep circulation and surface water reservoir ages cannot be ruled out and will need to be investigated with a more complete model.
    Description: U.S. National Science Foundation Grant Number: OCE‐1301907
    Description: 2018-07-08
    Keywords: Last deglaciation ; Ocean ventilation ; Data synthesis ; Radiocarbon ; Inverse method
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...