ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Field observations of the ocean's forced stage response to three hurricanes, Norbert (1984), Josephine (1984) and Gloria (1985), are analyzed and presented in a storm-centered coordinate system. All three hurricanes had a non-dimensional speed of O(1) and produced a strongly rightward biased response of the ocean surface mixed layer (SML) transport and current. The maximum layer-averaged SML currents varried from 0.8 m S-1 in response to Josephine, which was a fairly weak hurricane, to 1.7 m S.l in response to Gloria, which was much stronger. In these two cases the current amplitude is set primarly by the strength of the wind stress and its efficiency of coupling with the SML current, and the depth of vertical mixing of the SML. The Norbert case (SML Burger number ≈ 1/2) was also affected by significant pressure-coupling with the thermocline that caused appreciable upwellng by inertial pumping and strong thermocline-depth currents, up to 0.3 m S-l, under the trailing edge of Norbert. The observed SML current has a vertical shear in the direction of the local wind of up to 0.01 S-l. This vertical shear causes the surface current to be larger than the layer-averaged SML current described above by typically 0.2 m S.l.
    Description: Funding was provided by the Office of Naval Research under grant No. N00014-89-J-I053.
    Keywords: Ocean models ; Wind-driven currents ; Aircraft measurements
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 3034212 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 880–895, doi:10.1175/2007JPO3750.1.
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows enter the open ocean as dense gravity currents that flow along and down the continental slope. While descending the slope, overflows typically double their volume transport by entraining upper oceanic water. The upper oceanic layer must balance this loss of mass, and the resulting convergent flow produces significant vortex stretching. Overflows thus represent an intense and localized mass and vorticity forcing for the upper ocean. In this study, simulations show that the upper ocean responds to the overflow-induced forcing by establishing topographic β plumes that are aligned more or less along isobaths and that have a transport that is typically a few times larger than that of the overflows. For the topographic β plume driven by the Mediterranean overflow, the occurrence of eddies near Cape St. Vincent, Portugal, allows the topographic β plume to flow across isobaths. The modeled topographic β-plume circulation forms two transatlantic zonal jets that are analogous to the Azores Current and the Azores Countercurrent. In other cases (e.g., the Denmark Strait overflow), the same kind of circulation remains trapped along the western boundary and hence would not be readily detected.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530.
    Keywords: North Atlantic Ocean ; Mediterranean region ; Ocean models ; Mass fluxes/transport ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...