ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2017
    Description: Thecosome pteropods are planktonic mollusks that form aragonite shells and that may experience increased dissolution and other adverse effects due to ocean acidification. This thesis focuses on assessing the possible biological effects of ocean acidification on the shells and locomotion of pteropods and examining the response of a local pteropod population to environmental change over time. I analyzed shell condition after exposing pteropods to elevated CO2 as well as in natural populations to investigate the sensitivity of the shells of different species to aragonite saturation state (ΩA). The pteropods (Limacina retroversa) from laboratory experiments showed the clearest pattern of shell dissolution in response to decreased ΩA, while wild populations either had non-significant regional trends in shell condition (Clio pyramidata) or variability in shell condition that did not match expectations due to regional variability in ΩA (Limacina helicina). At locations with intermediate ΩA (1.5-2.5) the variability seen in L. helicina shell condition might be affected by food availability more than ΩA. I examined sinking and swimming behaviors in the laboratory in order to investigate a possible fitness effect of ocean acidification on pteropods. The sinking rates of L. retroversa from elevated CO2 treatments were slower in conjunction with worsened shell condition. These changes could increase their vulnerability to predators in the wild. Swimming ability was mostly unchanged by elevated CO2 after experiments that were up to three weeks in duration. I used a long-term dataset of pteropods in the Gulf of Maine to directly test whether there has been a population effect of environmental change over the past several decades. I did not observe a population decline between 1977 and 2015, and L. retroversa abundance in the fall actually increased over the time series. Analysis of the habitat use of L. retroversa revealed seasonal associations with temperature, salinity, and bottom depths. The combination of laboratory experiments and field surveys helped to address gaps in knowledge about pteropod ecology and improve our understanding of the effects of ocean acidification on pteropods.
    Description: Funding for this research was provided by a National Science Foundation grant to Lawson, Lavery, Wang, and Wiebe (OCE-1041068), a National Science Foundation grant to Lawson, Maas, and Tarrant (OCE-1316040), a WHOI Coastal Ocean Institute Student Research Proposal Award to Bergan (COI-27040178), the Pickman Foundation, the Tom Haas Fund at the New Hampshire Charitable Foundation, and the WHOI Academic Programs Office.
    Keywords: Mollusks ; Plankton ; Ocean acidification ; Shells
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science 74 (2017): 1893–1905, doi:10.1093/icesjms/fsx008.
    Description: Shelled pteropods are planktonic molluscs that may be affected by ocean acidification. Limacina retroversa from the Gulf of Maine were used to investigate the impact of elevated carbon dioxide (CO2) on shell condition as well as swimming and sinking behaviours. Limacina retroversa were maintained at either ambient (ca. 400 μatm) or two levels of elevated CO2 (800 and 1200 μatm) for up to four weeks, and then examined for changes in shell transparency, sinking speed, and swimming behaviour assessed through a variety of metrics (e.g., speed, path tortuosity, wing beat frequency). After exposures to elevated CO2 for as little as four days, the pteropod shells were significantly darker and more opaque in the elevated CO2 treatments. Sinking speeds were significantly slower for pteropods exposed to medium and high CO2 in comparison to the ambient treatment. Swimming behaviour showed less clear patterns of response to treatment and duration of exposure, but overall, swimming did not appear to be hindered under elevated CO2. Sinking is used by L. retroversa for predator evasion, and altered speeds and increased visibility could increase the susceptibility of pteropods to predation.
    Description: Funding for this research was provided by a National Science Foundation grant to Lawson, Maas, and Tarrant (OCE-1316040). Additional support for field sampling was provided by the WHOI Coastal Ocean Institute, Pickman Foundation, and the Tom Haas Fund at the New Hampshire Charitable Foundation.
    Keywords: Ocean acidification ; Shell condition ; Locomotion ; Thecosome pteropod
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...