ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.
    Keywords: OPTICS
    Type: The Telecommunications and Data Acquisition Report; p 121-135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Tracking of interplanetary spacecraft equipped with optical communication systems by using astrometric instruments is being investigated by JPL. Existing instruments are designed to work at night and, for bright sources, are limited by tropospheric errors. To provide full coverage of the solar system, astrometric tracking instruments must either be capable of daytime operation or be space-based. The integration times necessary for the ground-based daytime photon statistical errors to reach a given accuracy level (5 to 50 nanoradians) were computed for an ideal astrometric instrument. The required photon statistical integration times are found to be shorter than the tropospheric integrations times for the ideal detector. Since the astrometric need not be limited by photon statistics even under daytime conditions, it may be fruitful to investigate instruments for daytime optical tracking.
    Keywords: OPTICS
    Type: The Telecommunications and Data Acquisition Report; p 90-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...