ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OCEANOGRAPHY
Collection
Keywords
Years
  • 1
    Publication Date: 2011-08-19
    Description: Low C-13/C-12 in present-day Antarctic plankton has been ascribed to high CO2 availability. It is reported here, however, that this high-latitude C-13 depletion develops at CO2 partial pressures that are often below that of the present atmosphere and usually below that of equatorial upwelling systems. Nevertheless, because of much lower water temperatures and hence greater CO2 solubility at high latitude, the preceding pCO2 measurements translate into Antarctic surface-water CO2 (aq) concentrations that are as much as 2.5 times higher than in equatorial waters. It is calculated that an oceanic pCO2 level greater than 800 micro-atm is a warmer low-latitude Cretaceous ocean would have been required to produce the plankton C-13 depletion preserved in Cretaceous sediments.
    Keywords: OCEANOGRAPHY
    Type: Nature (ISSN 0028-0836); 341; 516-518
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: A method has been developed to produce high-resolution maps of pCO2 in surface water for the North Pacific using satellite sea surface temperature (SST) data and statistical relationships between measured pCO2 and temperature. In the subtropical North Pacific the pCO in seawater is controlled primarily by temperature. Accordingly, pCO2 values that are calculated from the satellite SST data have good agreement with the measured values (rms deviation of +/- microatm). In the northwestern subpolar region the pCO2 is controlled not only by temperature, but also by significant seasonal changes in the total CO2 concentration, which are caused by seasonal changes in primary production, mixing with subsurface waters and sea-air exchange. Consequently, the parameterization of oceanic p CO2 based on SST data alone is not totally successful in the northwestern region (rms deviation of +/- 40 microatm). The use of additional satellite products, such as wind and ocean color data, as planned for a future study, is considered necessary to account for the pCO2 variability caused by seasonal changes in the total CO2 concentration. The net CO2 flux for the area of the North Pacific included in this study (north of 10 deg N) has been calculated using the monthly pCO2 distributions computed, and monthly wind speeds from the European Centre for Medium-Range Weather Forecasts. The region is found to be a net source to the atmosphere of 1.9 x 10(exp 12) to 5.8 x 10(exp 12) moles of CO2 per year (or 0.02-0.07 Gt C/yr), most of the outflux occurring in the subtropics.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; C7; p. 13,571-13,583
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...