ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Relatively warm and salty North Atlantic surface waters flow through the Faeroe-Shetland Channel into the higher latitudes of the Nordic Seas, preserving an ice-free winter environment for much of the exterior coast of northern Europe. This flow was monitored along the Norwegian coast using Geosat altimetry on two ascending arcs during the Exact Repeat Mission in 1987-1989. Concurrent undertrack CTD surveys were used to fix a reference surface for the altimeter-derived SSH anomalies, in effect creating time series of alongtrack surface dynamic height topographies. Climatologic CTD casts were then used, with empirical orthogonal function (EOF) analysis, to derive relationships between historical surface dynamic heights and vertical temperature and salinity profiles. Applying these EOF relationships to the altimeter signals, mean transports of volume, heat, and salt were calculated at approximately 2.9 Sverdrups, 8.1 x 10 exp 11 KCal/s and 1.0 x 10 exp 8 Kg/s, respectively. Maximum transports occurred in February/March and minimum in July/August.
    Keywords: OCEANOGRAPHY
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 13, J; 1379-138
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The seasonal formation of a large (500-800 km diameter) anticyclonic eddy in the upper 300-400 m of the eastern Arabian Sea during the northest monsoon period (December-April) is indicated fom hydrographic and satellite altimetry sea level observations, as well as from numerical model experiments. The center of the eddy circulation is approximately 10 deg N, 70 deg E, just to the west of the north-south Laccadive Island chain. In this paper the eddy is called the Laccadive High (LH). In some ways it is like a mirrorlike counterpart to the Great Whirl that develops during the southwest monsoon of the Somali coast (western Arabian Sea). The LH occurs at the same latitude but on the opposite side of the basin during the reversed monsoon. It is different from the Great Whirl, however, in its formation process, its intensity, and its decay. The hydrographic data obtained from surveys all during a single season give sufficiently close station spacing to allow reasonable contouring of the geopotential surfaces and of the properties within and around the LH region with minimum time aliasing. The Geostat altimeter record extends over 4 years, during which the seasonal variability of the LH indicates a dynamic relief of approximately 15-20 cm, which is in good agreement with the hydrographics observations. The altimetry time series also suggests a westward translation of the LH by January with a subsequent dissipation in midbasin. The model used is a wind-forced three-layer primitive equation model which depicts a LH agreement with the timing, position, and amplitude of both the hydrographic and altimetric measurements. The numerical simulation includes a passive tracer located in the Western Bay of Bengal; the western advection of the tracer around the south coasts of Sri Lanka and India in December and January is consistent with the appearance of low-salinity water observed to extend into the Arabian Sea during this period. The modeling studies suggest that both local and remote forcing are important in formation of the LH.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C4; p. 7651-7664
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...