ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SPACE SCIENCES  (2)
  • MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT  (1)
  • OCEANOGRAPHY  (1)
  • 1
    Publication Date: 2019-06-27
    Description: Motion of spacecraft near triangular libration point of Earth-Moon system
    Keywords: SPACE SCIENCES
    Type: NASA-CR-65677 , TCR-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Spacecraft libration point motion in restricted four body model including earth-moon orbit plane inclination to ecliptic, noting solar effects
    Keywords: SPACE SCIENCES
    Type: ; ADEMIE DES SCIENCES
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The investigation is aimed at establishing a series of simple models which can be used to study the forces and moments which occur due to the reaction control system (RCS) jet plume firings during a deployment or retrieval of an IUS type payload. The models considered in this investigation are primarily planar in nature. In this study primary attention is given to the roles the payload play in determining the overall moments on the remote manipulator system arm.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: NASA-CR-151881
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,421-24,447
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...