ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OAE 2  (2)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 510–526, doi:10.1002/2014PA002741.
    Description: Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.
    Description: Z.L. thanks NSF OCE 1232620. J.D.O. is supported by an Agouron Postdoctoral Fellowship. T.W.L. acknowledges support from the NSF-EAR and NASA-NAI. A.R. thanks the support of NERC via NE/J01043X/1.
    Description: 2015-11-13
    Keywords: I/Ca ; OAE 2 ; Oxygenation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 457 (2017): 95-106, doi:10.1016/j.chemgeo.2017.03.016.
    Description: Carbonate-associated iodine (I/Ca) has been used as a proxy of local, upper-ocean redox conditions, and has successfully demonstrated highly dynamic spatial and temporal patterns across different time scales of Earth history. To further explore the utility of iodine as a paleo-environmental proxy, we present here a new method of extracting organically bound iodine (Iorg) from shale using volumes of samples on the order of tens of milligrams, thus offering the potential for high-resolution work across thin shale beds. The ratio of Iorg to total organic carbon (I/TOC) in modern surface and subsurface sediments decreases with decreasing bottom-water oxygen, which may be used to reconstruct paleo-redox changes. As a proof of concept, we evaluate the I/TOC proxy in Holocene sediments from the Baltic Sea, Landsort Deep (IODP 347) and discuss those data within a framework of additional independent redox proxies, e.g., iron speciation and [Mo]. The results imply that I/TOC may be sensitive to hypoxic–suboxic conditions, complementary to proxies sensitive to more reducing, anoxic–euxinic conditions. Then, we test the usage of I/TOC in sediments deposited during Late Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event (OAE) 2 from ~ 94 million years ago (Ma). We generated I/TOC and Iorg records from six OAE 2 sections: Tarfaya (Morocco), Furlo (central Italy), Demerara Rise (western equatorial Atlantic), Cape Verde Basin (eastern equatorial Atlantic), South Ferriby (UK), and Kerguelen Plateau (southern Indian Ocean), which provide a broad spatial coverage. Generally, I/TOC decreases over the interval recorded by the positive carbon-isotope excursion, the global signature of OAE 2, suggesting an expansion of more reducing bottom-water conditions and consistent with independent constraints from iron speciation and redox-sensitive trace-metals (e.g., Mo). Relatively higher I/TOC values (thus more oxic conditions) are recorded at two high latitude sites for OAE 2, supporting previous model simulations (cGENIE) that indicated higher bottom water oxygen concentrations in these regions. Our results also indicate that organic-rich and oxygenated seafloors are likely a major sink of iodine and correspondingly influence its global seawater inventory.
    Description: XZ, WL and ZL are supported by NSF EAR 1349252. DH and TWL acknowledge support from the Geobiology and Low-temperature Geochemistry (GG) Program of NSF. DH would like to acknowledge a Schlanger Ocean Drilling Fellowship.
    Keywords: I/TOC ; Bottom water ; OAE 2 ; Black shale ; Baltic
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...