ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of parallel programming 26 (1998), S. 313-344 
    ISSN: 1573-7640
    Keywords: MODULO SCHEDULING ; SOFTWARE PIPELINING ; REGISTERS ; ENUMERATION ; INSTRUCTION-LEVEL PARALLELISM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Resource-constrained software-pipelining has played an increasingly significant role in exploiting instruction-level parallelism and has drawn intensive academic and industrial interest. The challenge is to find a schedule which is optimal : i.e., given the data dependence graph (DDG) for a loop, find the fastest possible schedule under given resource constraints while keeping register usage minimal. This paper proposes a novel enumeration based modulo scheduling approach to solve this problem. The proposed approach does not require any awkward reworking of constraints into linear form and employs a realistic register model. The set of schedules enumerated also allows us to characterize the schedule space and address questions such as whether schedules using a small number of registers tend to require a large number of function units. The proposed approach has been implemented under the MOST testbed at McGill University. Experimental results on more than 1000 loops from popular benchmark programs show that enumeration is generally faster at obtaining optimal schedules than integer linear programming approaches. Compared to Huff's Slack Scheduling , enumeration found a faster schedule for almost 15% of loops, with a mean improvement of 18%. 10% of the remaining loops required fewer registers under enumeration, with a mean reduction of 16%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes. The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the question phase of FE applications on triangular meshes, and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments on EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies that are built into the runtime system.
    Keywords: Numerical Analysis
    Type: 5th International Symposium on Solving Irregularly Structured Problems in Parallel; Aug 09, 1998 - Aug 11, 1998; Berkley, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...