ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. This simulation corresponds to a case for gamma-ray burst afterglows. We will simulate colliding shells as an internal shock model for prompt emission. Turbulent magnetic fields generated by a slower shell will be collided by a faster shell. These magnetic fields contribute to the electron s transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. The properties of this radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts
    Keywords: Nuclear Physics
    Type: M10-0748 , 38th COSPAR Scientific Assembly/Committee on Space Research (COSPAR); Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of 〈_ 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique. The same technique will be used to calculate radiation from accelerated electrons (positrons) in turbulent magnetic fields generated by Weibel instability.
    Keywords: Nuclear Physics
    Type: M09-0458 , M09-0459 , 4th International Conference on Numerical Modeling of Space Plasma Flows (ASTRONUM 2009); Jun 29, 2009 - Jul 03, 2009; Chamonix; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electronpositron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. Radiation from electrons near the trailing shock will be variable due to fluctuations of density and electromagnetic fields. The properties of this radiation may be important for rapid variability in relativistic jets such as AGN jets and blazars.
    Keywords: Nuclear Physics
    Type: M10-0746 , 38th COSPAR Scientific Assembly/Committee on Space Research (COSPAR); Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. New spectra based on simulations will be presented.
    Keywords: Nuclear Physics
    Type: M10-0111 , M10-0175 , High Energy Phenomena in Relativistic Outflows II; Oct 26, 2009 - Oct 30, 2009; Buenes Aires; South Africa|4th International Conference on Numerical Modeling of Space Plasma Flow; Jun 29, 2009 - Jul 03, 2009; Chamonix; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...