ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-8744
    Schlagwort(e): methylprednisolone ; pharmacokinetics ; pharmacodynamics ; indirect pharmacodynamic response models ; glucocorticoid receptor ; Northern hybridization ; mRNA ; down-regulation ; tyrosine aminotransferase ; dose dependence ; tolerance
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Dose-dependent and repeated-dose effects of methylprednisolone (MPL) on down-regulation of glucocorticoid receptor messenger RNA (GR mRNA) and GR density, as well as tyrosine aminotransferase (TAT) mRNA and TAT induction by receptor/gene-mediated mechanisms in rat liver were examined. A previously developed pharmacokinetic/pharmacodynamic (PK/PD) model was used to design these studies which sought to challenge the model. Three groups of male adrenalectomized Wistar rats received MPL by iv injection: low-dose (10 mg/kg at Time 0), high-dose (50 mg/kg at Time 0), and dual-dose (50 mg/kg at Time 0 and 24 hr). Plasma concentrations of MPL, and hepatic content of free GR, GR mRNA, TAT mRNA, and TAT activity were determined. The P-Pharm program was applied for population analysis of MPL PK revealing low interindividual variation in CL and Vc values (3–14%). Two indirect response models were applied to test two competing hypotheses for GR mRNA dynamics. Indirect Pharmacodynamic Response Model I (Model A) where the complex in the nucleus decreases the transcription rate of GR mRNA better described GR mRNA/GR down-regulation. Levels of TAT mRNA began to increase at 1–2 hr, reached a maximum at 5–6 hr, and declined to the baseline at 12–14 hr after MPL dosing. The induction of TAT activity followed a similar pattern with a delay of about 1–2 hr. The low-dose group had 50–60% of the TAT mRNA and TAT induction compared to the high-dose group. Since the GR density returned to about 70% of the baseline level before the second 50 mg/kg dose at 24 hr, tolerance was found for TAT mRNA/TAT induction where only 50–60% of the initial responses were produced. Our fourth-generation model describes the dose dependence and tolerance effects of TAT mRNA/TAT induction by MPL involving multiple-step signal transduction controlled by the steroid regimen, free GR density, and GR occupancy. This model may provide the foundation for studying other induced proteins or enzymes mediated by the similar receptor/nuclear events.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-8744
    Schlagwort(e): methylprednisolone ; pharmacokinetics ; pharmacodynamics ; glucocorticoid receptor ; tyrosine aminotransferase ; Northern hybridization ; mRNA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract A third-generation pharmacokinetic/pharmacodynamic model was proposed for receptor/genemediated corticosteroid effects. The roles of the messenger RNA (mRNA) for the glucocorticoid receptor (GR) in hepatic GR down-regulation and the mRNA for hepatic tyrosine aminotransferase (TAT) induction by methylprednisolone (MPL) were examined. Male adrenalectomized Wistar rats received 50 mg/kg MPL iv. Blood and liver samples were collected at various time points for a period of 18 hr. Plasma concentrations of MPL, free hepatic cytosolic GR densities, GR mRNA, TAT mRNA, and TAT activities in liver were determined. Plasma MPL profile was biexponential with a terminal t1/2 of 0.57 hr. Free hepatic GR density rapidly disappeared from cytoplasm after the MPL dose and then slowly returned to about 60% of starting level after 16 hr. Meanwhile, GR mRNA level fell to 45% of baseline within 2 hr postdosing, and remained at that level for at least 18 hr. The GR down-regulation of GR mRNA and protein turnover rate were modeled. The TAT mRNA began to increase at about 2 hr, reached a maximum at about 5 hr, and declined to baseline by 14 hr. TAT induction followed a similar pattern, except the induction was delayed about 0.5 hr. Pharmacodynamic parameters were obtained by fitting seven differential equations in a piecewise fashion. The cascade of corticosteroid steps were modeled by a series of inductions for steroid-receptor-DNA complex, two intermediate transit compartments, TAT mRNA, and TAT activity. Results indicate that GR mRNA and TAT mRNA are major controlling factors for the receptor/gene-mediated effects of corticosteroids.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1573-8744
    Schlagwort(e): methylprednisolone ; pharmacokinetics ; pharmacodynamics ; indirect response models ; glucocorticoid receptor ; tyrosine aminotransferase ; Northern hybridization ; mRNA ; down-regulation ; receptor recycling
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract A fourth-generation pharmacokinetic/pharmacodynamic (PK/PD) model for receptor/genemediated effects of corticosteroids was developed. Male adrenalectomized Wistar rats received a 50 mg/kg iv bolus dose of methylprednisolone (MPL). Plasma concentrations of MPL, hepatic glucocorticoid receptor (GR) messenger RNA (mRNA) and GR density, tyrosine aminotransferase (TAT) mRNA, and TAT activity in liver were determined at various time points up to 72 hr after MPL dosing. Down-regulation of GR mRNA and GR density were observed: GR mRNA level declined to 45–50% of the baseline in 8–10 hr, and slowly returned to predose level in about 3 days; GR density fell to 0 soon after dosing and returned to the baseline in two phases. The first phase, occurring in the first 10 hr, entailed recovery from 0 to 30%. The second phase was parallel to the GR mRNA recovery phase. Two indirect response models were applied for GR mRNA dynamics regulated by activated steroid-receptor complex. A full PK/PD model for GR mRNA/GR down-regulation was proposed, including GR recycling theory. TAT mRNA began to increase at about 1.5 hr, reached the maximum at about 5.5 hr, and declined to the baseline at about 14 hr after MPL dosing. TAT induction followed a similar pattern with a delay of about 1–2 hr. A transcription compartment was applied as one of the cascade events leading to TAT mRNA and TAT induction. Pharmacodynamic parameters were obtained by fitting seven differential equations piecewise using the maximum likelihood method in the ADAPT II program. This model can describe GR down-regulation and the precursor/product relationship between TAT mRNA and TAT in receptor/gene-mediated corticosteroid effects.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...