ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-9686
    Keywords: Oxidation reduction ; Methylene blue ; Toluidine blue O ; Ubiquinone ; Mathematical modeling ; Multiple indicator dilution ; Lung cell culture ; Physiome ; Hyperoxia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The pulmonary endothelium is a chemical reactor that modifies blood composition in several ways, including reduction of the oxidized forms of certain redox active substances in the blood. The physiological functions of the transplasma membrane electron transport systems involved in the latter are not fully understood, but an argument is made that they are involved in antioxidant defense. In addition, the experimental approaches used to characterize the process, including studies at whole organ, cell culture, and subcellular levels, along with the use of mathematical modeling, may be representative of the physiome concept wherein a goal is the integration of information obtained at all levels of biological organization. In this article, separation of intra- and extracellular events involved in the disposition of redox active probes within the lungs is the particular example. © 2000 Biomedical Engineering Society. PAC00: 8716Uv, 8716Dg, 8715Rn, 8719Uv
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran (trademark), Spectra (trademark), Kevlar (trademark) and, PBO (Zylon (trademark)). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strength, breaking elongation, modulus, etc) of untreated, unexposed to UV fibers; untreated exposed to UV fibers; and treated exposed to UV fibers.
    Keywords: Nonmetallic Materials
    Type: 35th COSPAR 2004; Jul 01, 2004; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...