ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 166 (1996), S. 501-509 
    ISSN: 1432-136X
    Keywords: Key words Rainbow trout ; Swimming ; Respiratory quotient ; Nitrogen quotient ; Fuel ; Protein ; Carbohydrate ; Lipid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The types of fuel burned by juvenile rainbow trout (17 g) during a 58-h period of aerobic sustained exercise were studied by respirometry. Attempts to measure fuel usage by depletion (the compositional approach) in these same fish were unsuccessful due to lack of detectable changes in proximate body composition. O2 consumption, CO2 excretion, and nitrogenous waste excretion (ammonia-N plus urea-N) were measured in individual fish swum continuously at 55% and 80% of maximum sustainable swimming speed and in non-swimming controls. O2 consumption and CO2 excretion increased with swimming speed, and decreased over time. Absolute rates of N excretion were independent of swimming speed and time. Instantaneous aerobic fuel use, as calculated from the respiratory quotients and nitrogen quotients, was approximately 47% lipid, 30% protein, and 23% carbohydrate in non-swimmers at the start of the experiment. With increased swimming speed there was no change in absolute rates of protein oxidation, while lipid and carbohydrate oxidation both increased. Therefore, the relative protein contribution decreased with increasing speed but increased with swimming duration as the oxidation of other fuels declined over time. However, lipid oxidation predominated at all speeds and at all times. The relative contribution of carbohydrate increased with swimming speed and decreased over time. These results suggest that swimming becomes more efficient over time and help resolve uncertainties in the literature. We conclude that lipid is the main fuel of aerobic exercise, that protein catabolism is kept at minimum levels necessary for maintenance, and that carbohydrate oxidation becomes more important with increased white muscle recruitment at higher speed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 165 (1996), S. 542-551 
    ISSN: 1432-136X
    Keywords: Starvation ; Respiratory quotient ; Nitrogen quotient ; Fuel ; Rainbow trout, Oncorhynchus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Oxygen consumption, CO2 excretion, and nitrogenous waste excretion (75% ammonia-N and 25% urea-N) were measured daily in 4-g rainbow trout over a 15-day starvation period. Oxygen consumption and CO2 excretion declined while N excretion increased transiently in the mid-part of the starvation period but was unchanged from control levels at the end. Component losses (as percentage of total fuel used) of protein, lipid, and carbohydrate were 66.5, 31.1, and 2.4% respectively, as measured from changes in body weight and body composition, the latter relative to a control group at day 0. Instantaneous fuel use, as calculated from the respiratory quotients and nitrogen quotients, indicated that relative protein use rose during starvation, but contributed at most 24% of the aerobic fuel (as carbon). Lipid metabolism fell from about 68 to 37%, and was largely replaced by carbohydrate metabolism which rose from 20 to 37%. We conclude that the two approaches measure different processes, and that the instantaneous method is preferred for physiological studies. The compositional method is influence by greater error, and measures the fuels depleted, not necessarily burned, because of possible interconversion and excretion of fuels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 166 (1996), S. 501-509 
    ISSN: 1432-136X
    Keywords: Rainbow trout ; Swimming ; Respiratory quotient ; Nitrogen quotient ; Fuel ; Protein ; Carbohydrate ; Lipid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The types of fuel burned by juvenile rainbow trout (17 g) during a 58-h period of aerobic sustained exercise were studied by respirometry. Attempts to measure fuel usage by depletion (thecompositional approach) in these same fish were unsuccessful due to lack of detectable changes in proximate body composition. O2 consumption, CO2 excretion, and nitrogenous waste excretion (ammonia-N plus urea-N) were measured in individual fish swum continuously at 55% and 80% of maximum sustainable swimming speed and in non-swimming controls. O2 consumption and CO2 excretion increased with swimming speed, and decreased over time. Absolute rates of N excretion were independent of swimming speed and time.Instantaneous aerobic fuel use, as calculated from the respiratory quotients and nitrogen quotients, was approximately 47% lipid, 30% protein, and 23% carbohydrate in non-swimmers at the start of the experiment. With increased swimming speed there was no change in absolute rates of protein oxidation, while lipid and carbohydrate oxidation both increased. Therefore, the relative protein contribution decreased with increasing speed but increased with swimming duration as the oxidation of other fuels declined over time. However, lipid oxidation predominated at all speeds and at all times. The relative contribution of carbohydrate increased with swimming speed and decreased over time. These results suggest that swimming becomes more efficient over time and help resolve uncertainties in the literature. We conclude that lipid is the main fuel of aerobic exercise, that protein catabolism is kept at minimum levels necessary for maintenance, and that carbohydrate oxidation becomes more important with increased white muscle recruitment at higher speed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...