ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: Bacteroids ; Cowpea ; Nitrogen fixation ; Peanut ; Rhizobium ; Siratro
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Acetylene reduction activity and nitrogen accumulation in the plant top per unit nodule mass were compared among peanut, cowpea and siratro plants nodulated by six different strains of Rhizobium. Peanut was found to have several fold higher values than cowpea and siratro for both parameters for all strains of Rhizobium which nodulated it effectively, but the bacteroid content of the peanut nodules was similar to those of cowpea and siratro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 96 (1986), S. 327-335 
    ISSN: 1573-5036
    Keywords: Isotope discrimination ; Macropitilium atropurpureum ; Nitrogen fixation ; Nitrogen transfer ; Panicum coloratum ; Rhizobia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Isotope dilution provides a method for measuring plant competition for mineral N and transfer of biologically fixed N from a legume to a grass. A plant growth medium was enriched with15N, and used to grow Siratro (Macropitilium atropurpureum D.C. Urb.) and Kleingrass 75 (Panicum coloratum L.) in 20 liter pots for 98 days in a glasshouse. The plants were grown in pure stand and in mixtures. When grown in 50∶50 mixture the grass obtained 59% of the labelled N and the legume obtained 41%. The grass produced nearly as much root mass as the legume even though biomass of the shoots were less than half that of the legume. Reducing the proportion of either plant species in the mixture reduced the proportion of the mineralized N absorbed by that species. The shoots of the grass were significantly more enriched (1.166 atom%15N excess) than the roots (1.036). The grass received 12% of its N as biologically fixed N from the legume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 87 (1985), S. 223-231 
    ISSN: 1573-5036
    Keywords: Nitrogen fixation ; Rhizobia ; Vigna unguiculata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Biological nitrogen fixation is considered an important trait of cowpeas (Vigna unguiculata (L.) Walp. var. ‘California Blackeye’ No. 5) for economical production yet the process does not alone provide the quantity of nitrogen required by the plant for maximum productivity. Two experiments were undertaken to determine the potential of an increase in nodule mass and number of bacteroids resulting in increased nitrogen fixation. Cowpeas were grown in a glasshouse for 7 weeks under conditions forcing near total dependence on biological nitrogen fixation for growth. Nodule mass on the roots was varied by inoculating seeds with various ratios of effective and ineffective rhizobia that could be identified serologically and by the color of nodule formed. The results of both experiments demonstrated a linear relationship between total nodule mass formed by the effective rhizobia and quantity of nitrogen fixed. The regression coefficients were high in both experiments (r=0.99** and 0.91**). The relationship between total nitrogen fixed and total number of bacteroids of the effective strain was not consistent. In one experiment the regression coefficient was 0.93** but in the other experiment it was 0.65**. From these results it appears that there is good potential for increasing nitrogen fixation in cowpeas by increasing nodule mass. An increase in nodule mass would also result in an increase in the number of bacteroids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 94 (1986), S. 147-151 
    ISSN: 1573-5036
    Keywords: Nitrogen fixation ; 15N Rhizobia ; Vigna radiata ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Remobilization of15N from vegetative tissue of mungbean (Vigna radiata (L.) Wilczek) into pods was measured during the reproductive phase of growth. Plant tissue was labelled with15N during vegetative development. Experiments were conducted in the field at two sites. At one site the soil provided cowpeas with most of their N but at the other site N fixation provided most of the N. Remobilized N from vegetative tissue to pods occurred soon after they began to develop. The quantity of the labelled N ultimately remobilized to the pods amounted to 50% for one cultivar (Tx33) at the high soil N site and 70% at the low N site. For the other cultivar (Tx13) the values were 25% and 30%, respectively. The two cultivars performed very differently with respect to partitioning of N into pods and the rate of N fixation. Even though more N was accumulated in the shoots of the high N fixing cultivar (Tx13) less total N was contained in the pods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...