ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Bioavailability ; CO2−C evolution ; Heavy metals ; Microbial biomass C ; Metabolic quotient ; Soil incubation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this work we studied the influence of Pb, Zn, and Tl on microbial biomass survival and activity during a laboratory incubation of soil. In comparison to uncontaminated soil, the microbial biomass C decreased sharply in soil contaminated with Zn and Tl, whereas the addition of Pb did not have any significant inhibitory effect on the level of microbial biomass C. Zn displayed the greatest biocidal effect, confirmed by the measurement of the death rate quotient (q D). The microbial activity, measured as CO2 evolution, increased significantly in contaminated soils, emphasizing the need of living organisms to expend more energy to survive. The greater demand for energy by microorganisms in order to cope with the toxicity of pollutants was also confirmed by measurement of the metabolic quotient (q CO2). In order to determine whether soil microorganisms affect the bioavailability of these metals through their mobilization and release, we studied the relationships between available Pb, Zn, and Tl, and microbial biomass C. The water-soluble fraction of Tl, available Tl, and Zn, and microbial biomass C were related significantly, but not Pb.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 33 (1992), S. 71-79 
    ISSN: 1573-0867
    Keywords: Nitrogen balance ; 15N ; oxamide ; slow release fertilizer ; soil microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Slow release N fertilizers are receiving increasing attention for use on turf grass, but their fate in the plant-soil system is still poorly understood. We aimed to quantify the uptake and recovery of N by a mixture of grasses when applied as either urea or oxamide in different diameter granules using a tracer technique (15N). The effects of the N source on soil biomass, root density and amount of readily available organic C in soil were also evaluated. In a first experiment oxamide in 4–5 mm diameter granules was compared with urea. The initial N absorption, 40 days after fertilization (d.a.f.), was higher for urea (23.5%) than for oxamide (12.1%), but after 64 days absorption efficiencies were about the same (11%) for both fertilizers. Fertilizer-derived N lost by leaching was much greater from the urea-fertilized soil (1.57 g), compared with losses from oxamide-fertilized soil (0.05 g). The total residual fertilizer N remaining in the system at the end of the experiment was 26.7% of applied urea N and 39.6% of applied oxamide N. Cumulated absorption efficiencies, calculated after dismantling the lysimeters, were 43.1% for urea and 54.8% for oxamide (roots included). A priming effect caused by a larger uptake of soil N because of the better root development was found in the oxamide-treated lysimeter. Fertilization with oxamide also caused an increase in the amount of soil microbial biomass. In a second experiment, the efficiencies and fertilizer N uptake rates from oxamide applied at two different granule sizes (1–2 mm and 5–10 mm) were evaluated. The amount of soil N taken up by the grass was linearly related to root density (r = 0.92).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...