ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0417
    Keywords: lake levels ; Lake Erie ; Lake Agassiz ; Younger Dryas ; Niagara Gorge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract A high water phase in the Lake Erie basin is identified from a variety of evidence for the period 11.0 ka to 10.5 ka. It is believed to correspond to the first Agassiz inflow to the upper Great Lakes (Main Lake Algonquin phase) when Agassiz waters discharged in both catastrophic and equilibrium modes to Lake Superior. After allowing for differential isostatic rebound, a computational model is used to estimate the lake levels in the Erie basin needed to generate Agassiz-equivalent discharges out of the basin into Lake Ontario. Computations suggest that Lake Tonawanda spillways would be re-activated by the high lake levels needed to sustain Agassiz-equivalent discharges. Existing published evidence from the Erie basin, Niagara River, and western New York (including 14C dates), is consistent with this interpretation. Additional evidence from the Niagara Peninsula (pollen spectra and geomorphology) supports the inference that extensive flooding of the southern Niagara Peninsula (Lake Wainfleet) occurred due to high water levels in the Erie basin. In the Niagara Peninsula, very shallow ‘washover’ spillways would only operate when standard hydrologic variations of lake level in the Erie basin coincided with short term high levels driven by catastrophic inflows to the Great Lakes from Lake Agassiz. We support the view of Lewis & Anderson (1992) that a meltwater flux from Agassiz inflows reached Lake Erie.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0417
    Keywords: lake levels ; Lake Erie ; Lake Wainfleet ; Niagara Gorge ; Niagara River ; Niagara Peninsula palyonology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Over the last 12 600 years, lake levels in the eastern Lake Erie basin have fluctuated dramatically, causing major changes in drainage patterns, flooding and draining ephemeral Lake Wainfleet several times and widening and narrowing the Niagara Gorge as the erosive effects of Niagara Falls waxed and waned. The control sill for Lake Erie levels was at first the Fort Erie/Buffalo sill, before the Lyell/Johnson sill in Niagara Falls took over due to isostatic rebound. This sill, in time, was eventually eroded by the recession of Niagara Falls and the Fort Erie/Buffalo sill regained control. The environmental picture is complicated by catastrophic outbursts from glacial Lake Agassiz and Lake Barlow-Ojibway, changes in outlet routes, isostatic rebound and climatic changes over the Great Lakes basins. Today, the flow of water into Lake Erie from the streams and rivers surrounding it only accounts for about 13% of the flow out of it, therefore, the importance of flow from the Upper Great Lakes, specifically the flow from Lake Huron, has a great effect on Lake Erie levels. While the changing control sills, Lyell/Johnson and Buffalo/Fort Erie would affect Lake Erie levels, overall they are mostly input driven by the amount of waters received from the Upper Great Lakes. Since Lake Erie's water level changes are so closely tied to Lake Huron's water level changes we have decided to use names assigned to Lake Huron such as the two Mattawa highstands and three Stanley lowstands rather than inflict a whole new set of names on the public. While the duration of each high and lowstand in Erie and Huron may not always be the same, they always happen within the same time frame. The datum elevations used for Lake Huron (175.8 m) and Lake Erie (173.3 m) are historically recorded averages. The Lake Erie levels proposed in this paper reflect Lake Hurons effects on Lake Erie and the levels occuring at the eastern end of the Erie Basin throughout the last 12 600 years. All dates in this paper are uncorrected 14 C dates unless the date was obtained from shells, then the date has been corrected for hard-water effects. Also, all heights are given as modern day elevations and are not adjusted for isostatic rebound.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...