ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 49 (1998), S. 485-507 
    ISSN: 1573-4889
    Keywords: INTERMETALLICS ; Ni3AL PARTICLE SIZE ; OXIDATION KINETICS ; POWDER METALLURGY
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The influence of particle size on the oxidationbehavior of Ni3Al prepared by powdermetallurgy (PM) was investigated in the temperaturerange of 535 to 1020°C for exposures up to 200 hr.Four alloys were obtained, each one processed with a differentpowder particle size fraction (〈25, 25-50, 50-100,and 100-200 μm). For temperatures below 730°C,the scale consists of an outer NiO layer, a thindiscontinuous intermediate nickel layer, and an internaloxidation zone. The lowest oxidation rate corresponds tothe material with the smallest particle size. Thisresults from its higher grain-boundary density; the boundaries act as easy-diffusion paths foraluminum leading to the rapid formation of a continuousinner alumina layer. At temperatures above 730°C, athree layered scale is observed consisting of an outer NiO layer, an intermediate layer that,depending on temperature, consisted of a mixture ofnickel and aluminum oxides orNiAl2O4, and an inner layer ofAl2O3, which accounts for thehigher oxidation resistance. The oxidation attack is characterized byintrusions of the scale into the alloy, the intrusionnumber increasing as the particle size decreases. It isassumed that oxide particles and impurities present at the original particle boundaries facilitatealumina growth along these regions. Thus, the lowestoxidation rate for the highest temperature rangecorresponds to the largest particle-sizematerial.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...