ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 95 (1993), S. 153-163 
    ISSN: 1432-1939
    Keywords: Evaporation ; Aerodynamic conductance ; Canopy conductance ; Humidity response ; Soil water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is 〉0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less. Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone. Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 451-455 
    ISSN: 1432-1939
    Keywords: Nitrogen fixation ; Carbon isotope ratio ; Nitrogen isotope ratio ; Acacia ; Namibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Nitrogen (N2) fixation was estimated along an aridity gradient in Namibia from the natural abundance of 15N (δ15N value) in 11 woody species of the Mimosacease which were compared with the δ15N values in 11 woody non-Mimosaceae. Averaging all species and habitats the calculated contribution of N2 fixation (N f ) to leaf nitrogen (N) concentration of Mimosaceae averaged about 30%, with large variation between and within species. While in Acacia albida N f was only 2%, it was 49% in Acacia hereroensis and Dichrostachys cinerea, and reached 71% in Acacia melifera. In the majority of species N f was 10–30%. There was a marked variation in background δ15N values along the aridity gradient, with the highest δ15N values in the lowland savanna. The difference between δ15N values of Mimosaceae and non-Mimosaceae, which is assumed to result mainly from N2 fixation, was also largest in the lowland savanna. Variations in δ15N of Mimosaceae did not affect N concentrations, but higher δ15N-values of Mimosaeae are associated with lower carbon isotope ratios (δ13C value). N2 fixation was associated with reduced intrinsic water use efficiency. The opposite trends were found in non-Mimosaceae, in which N-concentration increased with δ15N, but δ13C was unaffected. The large variation among species and sites is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Mistletoe ; Nitrogen and carbon parasite ; Carbon and nitrogen stable isotopes ; Water use efficiency ; Namibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Xylem-tapping mistletoe species growing on Mimosaccae, non-Mimosaceae and hosts performing Crassulacean acid metabolism (CAM) were studied along an aridity gradient in the Namib desert. °13C-values of mistletoes became more negative with decreasing nitrogen (N)-concentration in their leaves, while the host plants showed no such relationship. This might suggest that mistletoes regulate their water use efficiency according to the nitrogen supply from the host. However, further inspection of the data indicates that the relations of δ13C-values with leaf nitrogen in mistletoes may result from carbon input from the host. This is especially true for mistletoes growing on CAM plants which exhibit a very high δ13C-value, but show no evidence of CAM. It is calculated that about 60% of the carbon in mistletoes growing on C3 and on CAM hosts originated from the host. The hypothesis of Marshall and Ehleringer (1990) that xylem tapping mistletoes are also carbon parasites could explain the change in δ13C-values with N-supply and the difference in δ13C-values between mistletoes growing on C3 and CAM hosts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Humidity response ; Stomata ; Transpiration ; Water potential ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Short-term (hours) changes in plant water status were induced in hazel (Corylus avellana L.) by changing the evaporative demand on a major portion of the shoot while maintaining a branch in a constant environment. Stomatal conductance of leaves on the branch was influenced little by these short-term changes in water status even with changes in leaf water potential as great as 8 bars. Long-term (days) changes in plant water status were imposed by soil drying cycles. Stomatal conductance progessively decreased with increases in long-term water stress. Stomata still responded to humidity with long-term water stress but the range of the conductance response decreased. Threshold responses of stomata to leaf water potential were not observed with either short-term or long-term changes in plant water status even when leaves wilted. It is suggested that concurrent measurements of plant water status may not be sufficient for explaining stomatal and other plant responses to drought.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...