ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Evaporation  (2)
  • Namibia  (2)
  • Siberia  (2)
  • 1995-1999  (3)
  • 1990-1994  (3)
  • 1900-1904
  • 1
    ISSN: 1432-1939
    Keywords: Key wordsPinus sylvestris ; Siberia ; Biomass ; Self-thinning ; Forest fire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the “lichen” site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6–10 kgdw m−2 after 200 years depending on stand density and fire history compared to 20 kgdw m−2 in the “Vaccinium” type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5–1.5 and crown cover was 30–60%, whereas LAI reached 2.5 and crown cover was 〉100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope −0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Mistletoe ; Nitrogen and carbon parasite ; Carbon and nitrogen stable isotopes ; Water use efficiency ; Namibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Xylem-tapping mistletoe species growing on Mimosaccae, non-Mimosaceae and hosts performing Crassulacean acid metabolism (CAM) were studied along an aridity gradient in the Namib desert. °13C-values of mistletoes became more negative with decreasing nitrogen (N)-concentration in their leaves, while the host plants showed no such relationship. This might suggest that mistletoes regulate their water use efficiency according to the nitrogen supply from the host. However, further inspection of the data indicates that the relations of δ13C-values with leaf nitrogen in mistletoes may result from carbon input from the host. This is especially true for mistletoes growing on CAM plants which exhibit a very high δ13C-value, but show no evidence of CAM. It is calculated that about 60% of the carbon in mistletoes growing on C3 and on CAM hosts originated from the host. The hypothesis of Marshall and Ehleringer (1990) that xylem tapping mistletoes are also carbon parasites could explain the change in δ13C-values with N-supply and the difference in δ13C-values between mistletoes growing on C3 and CAM hosts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 88 (1991), S. 451-455 
    ISSN: 1432-1939
    Keywords: Nitrogen fixation ; Carbon isotope ratio ; Nitrogen isotope ratio ; Acacia ; Namibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Nitrogen (N2) fixation was estimated along an aridity gradient in Namibia from the natural abundance of 15N (δ15N value) in 11 woody species of the Mimosacease which were compared with the δ15N values in 11 woody non-Mimosaceae. Averaging all species and habitats the calculated contribution of N2 fixation (N f ) to leaf nitrogen (N) concentration of Mimosaceae averaged about 30%, with large variation between and within species. While in Acacia albida N f was only 2%, it was 49% in Acacia hereroensis and Dichrostachys cinerea, and reached 71% in Acacia melifera. In the majority of species N f was 10–30%. There was a marked variation in background δ15N values along the aridity gradient, with the highest δ15N values in the lowland savanna. The difference between δ15N values of Mimosaceae and non-Mimosaceae, which is assumed to result mainly from N2 fixation, was also largest in the lowland savanna. Variations in δ15N of Mimosaceae did not affect N concentrations, but higher δ15N-values of Mimosaeae are associated with lower carbon isotope ratios (δ13C value). N2 fixation was associated with reduced intrinsic water use efficiency. The opposite trends were found in non-Mimosaceae, in which N-concentration increased with δ15N, but δ13C was unaffected. The large variation among species and sites is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 95 (1993), S. 153-163 
    ISSN: 1432-1939
    Keywords: Evaporation ; Aerodynamic conductance ; Canopy conductance ; Humidity response ; Soil water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is 〉0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less. Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone. Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 121 (1995), S. 79-87 
    ISSN: 1573-5052
    Keywords: Canopy ; Evaporation ; Leaf area index ; Scaling ; Surface conductance ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-2932
    Keywords: Siberia ; forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The most widely distributed coniferous forests in the world are the larch forests. In the Russian Federation they occupy 27.6 × 106 ha. In Siberia, the larch species Larix russica generally grows west of the Yenissei River, and Larix gmelinii grows to the east. The morphological and physiological features of L. gmelinii make it possible for this species to grow in the far north of eastern Siberia, where climate conditions are more severe: The range of air temperature fluctuations in this region is more than 100°C, from 38°C down to 64°C below zero. One of the major adaptions to unfavorable soil conditions is provided by a specific feature of root formation in L. gmelinii, in which the apex central root dies off at the permafrost border and a root system develops in upper soil layers. The major larch vulnerability factors are natural and anthropogenic fires and damage caused by insects, which become more frequent with hot and dry weather. The consequences of projected global warming could be both positive and negative for larch forests. Permafrost melting may result in improved soil nutrition in the areas the larch forests occupy, yet the frequency of forest fires and damage by pathogens are likely to increase. Global warming is expected to cause forest die back and increased areas of steppe in the southern regions of eastern Siberia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...