ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 145 (1995), S. 165-173 
    ISSN: 1432-1424
    Keywords: Na,K-ATPase ; Potassium binding ; Electrogenic transport ; Cation binding site ; Sequential binding ; Activation energy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Ion binding at the extracellular face of the Na,K-ATPase is electrogenic and can be monitored by the styryl dye RH 421 in membrane fragments containing a high density of the Na,K-pumps. The fluorescent probe is noncovalently bound to the membrane and responds to changes of the local electric field generated by binding or release of cations inside the protein. Due to the fact that K+ binding from the extracellular side is an electrogenic reaction, it is possible to detect the amount of ions bound to the pump as function of the aqueous concentration. The results are in contradiction to a second order reaction, i.e., a simultaneous binding of two K+ ions. A mathematical model is presented to discuss the nature of the two step binding process. On the basis of this model the data allow a quantitative distinction between binding of the first and the second K+ ion. The temperature dependence of ion binding has been investigated. At low temperatures the apparent dissociation constants differ significantly. In the temperature range above 20°C the resulting apparent dissociation constants for both K+ ions merge and have values between 0.2 and 0.3 mm, which is consistent with previous experiments. The activation energy for the half saturating concentration of K+ is 22 kJ/mol. Additional analysis of the titration curve of K+ binding to the state P — E2 by the Hill equation yields a Hill coefficient, nHill, of 1.33, which is in agreement with previously published data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 121 (1991), S. 163-176 
    ISSN: 1432-1424
    Keywords: Na,K-ATPase ; ion pumps ; electrogenic transport ; potentiometric dyes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In the first part of the paper, evidence has been presented that electrochromic styryl dyes, such as RH 421, incorporate into Na, K-ATPase membranes isolated from mammalian kidney and respond to changes of local electric field strength. In this second part of the paper, fluorescence studies with RH-421-labeled membranes are described, which were carried out to obtain information on the nature of charge-translocating reaction steps in the pumping cycle. Experiments with normal and chymotrypsin-modified membranes show that phosphorylation by ATP and occlusion of Na+ are electroneutral steps, and that release of Na+ from the occluded state to the extracellular side is associated with translocation of charge. Fluorescence signals observed in the presence of K+ indicate that binding and occlusion of K+ at the extracellular face of the pump is another major electrogenic reaction step. The finding that the fluorescence signals are insensitive to changes of ionic strength leads to the conclusion that the binding pocket accommodating Na+ or K+ is buried in the membrane dielectric. This corresponds to the notion that the binding sites are connected with the extracellular medium by a narrow access channel (“ion well”). This notion is further supported by experiments with lipophilic ions, such as tetraphenylphosphonium (TPP+) or tetraphenylborate (TPB−), which are known to bind to lipid bilayers and to change the electrostatic potential inside the membrane. Addition of TPP+ leads to a decrease of binding affinity for Na+ and K+, which is thought to result from the TPP−-induced change of electric field strength in the access channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...