ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Baroclinic flows  (1)
  • NPZD modeling  (1)
  • 2010-2014  (2)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 517–535, doi:10.1002/jgrc.20068.
    Beschreibung: A two-dimensional (cross-shelf) numerical model of the mean seasonal circulation offshore of southern New England predicts upwelling at the shelfbreak front. Expected ramifications of this upwelling include enhancement of nutrient supply, phytoplankton biomass, and productivity. However, seasonal climatologies of chlorophyll based on both in situ data and satellite observations show no mean enhancement at the front. We investigate this apparent discrepancy with a four-component planktonic ecosystem model coupled to the two-dimensional physical model. Nutrient fields are restored to climatological values at depth, and upper ocean values evolve freely according to physical and biological forcing. Vertical diffusivity is based on seasonally averaged surface and bottom mixed layer depths compiled from in situ observations. The model reproduces the general pattern of the observed cross-shelf and seasonal variations of the chlorophyll distribution. It predicts a local enhancement of phytoplankton productivity at the shelfbreak in spring and summer as a result of the persistently upwelled nutrient-rich slope water. In the model, zooplankton grazing prevents accumulation of phytoplankton biomass at the site of the upwelling. The predicted enhancement of primary productivity (but not phytoplankton biomass) at the shelfbreak constitutes a hypothesis that could be tested in the future with suitable measurements from regional long-term observatories, such as the Ocean Observatories Initiative Pioneer Array.
    Beschreibung: WGZ was supported by the Woods Hole Oceanographic Institution (WHOI) postdoctoral scholarship program, the WHOI Coastal Ocean Institute, and the National Science Foundation through grant OCE-1129125. DJM and GGG were supported by ONR grant N00014-06-1-0739. DJM gratefully acknowledges support of WHOI’s H. W. Jannasch Chair.
    Beschreibung: 2013-07-31
    Schlagwort(e): Shelfbreak front ; Biological productivity ; NPZD modeling ; Zooplankton grazing ; Shelf break upwelling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Beschreibung: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Beschreibung: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Beschreibung: 2014-09-01
    Schlagwort(e): Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...