ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.
    Keywords: NONMETALLIC MATERIALS
    Type: AIAA PAPER 85-0420
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.
    Keywords: NONMETALLIC MATERIALS
    Type: NASA-TM-82873 , E-1249 , NAS 1.15:82873
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.
    Keywords: NONMETALLIC MATERIALS
    Type: NASA-TM-87051 , E-2454 , NAS 1.15:87051 , Aerospace Sci. Meeting; Jan 14, 1985 - Jan 17, 1985; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Kapton polyimide oxidizes at significant rates (4.3x10(-24) gram/incident oxygen atom) when exposed in low Earth orbit to the ram atomic oxygen flux. Ion beam sputter deposited thin films of Al2O3 and SiO2 as well as a codeposited mixture of predominantly SiO2 with a small amount of polytetrafluoroethylene were evaluated and found to be effective in protecting Kapton from oxidation in both laboratory plasma ashing tests as well as in space on board shuttle flight STS-8. A protective film of or = 96 percent SiO2 and or = 4 percent polytetrafluoroethylene was found to be very flexible compared to the pure metal oxide coatings and resulted in mass loss rates that were 0.2 percent of that of the unprotected Kapton. The optical properties of Kapton for wavelengths investigated between 0.33 and 2.2 microns were not significantly altered by the presence of the coatings or changed by exposure of the coated Kapton to the low Earth orbital ram environment.
    Keywords: NONMETALLIC MATERIALS
    Type: NASA-TM-83706 , E-2092 , NAS 1.15:83706 , Intern. Conf. on Met. Coatings; Apr 09, 1984 - Apr 13, 1984; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...