ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: intracellular fluxes ; metabolite balance ; carbon labeling balance ; lysine ; anaplerotic reactions ; NMR spectroscopy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To determine the in vivo fluxes of the central metabolism we have developed a comprehensive approach exclusively based on the fundamental enzyme reactions known to be present, the fate of the carbon atoms of individual reactions, and the metabolite balance of the culture. No information on the energy balance is required, nor information on enzyme activities, or the directionalities of reactions. Our approach combines the power of 1H-detected 13C nuclear magnetic resonance spectroscopy to follow individual carbons with the simplicity of establishing carbon balances of bacterial cultures. We grew a lysine-producing strain of Corynebacterium glutamicum to the metabolic and isotopic steady state with [1-13C]glucose and determined the fractional enrichments in 27 carbon atoms of 11 amino acids isolated from the cell. Since precursor metabolites of the central metabolism are incorporated in an exactly defined manner in the carbon skeleton of amino acids, the fractional enrichments in carbons of precursor metabolites (oxaloacetate, glyceraldehyde 3-phosphate, erythrose 4-phosphate, etc.) became directly accessible. A concise and generally applicable mathematical model was established using matrix calculus to express all metabolite mass and carbon labeling balances. An appropriate all-purpose software for the iterative solution of the equations is supplied. Applying this comprehensive methodology to C. glutamicum, all major fluxes within the central metabolism were determined. The result is that the flux through the pentose phosphate pathway is 66.4% (relative to the glucose input flux of 1.49 mmol/g dry weight h), that of entry into the tricarboxylic acid cycle 62.2%, and the contribution of the succinylase pathway of lysine synthesis 13.7%. Due to the large amount and high quality of measured data in vivo exchange reactions could also be quantitated with particularly high exchange rates within the pentose phosphate pathway for the ribose 5-phosphate transketolase reaction. Moreover, the total net flux of the anaplerotic reactions was quantitated as 38.0%. Most importantly, we found that in vivo one component within these anaplerotic reactions is a back flux from the carbon 4 units of the tricarboxylic acid cycle to the carbon 3 units of glycolysis of 30.6%. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 624-635 
    ISSN: 0006-3592
    Keywords: NMR spectroscopy ; membrane cyclone reactor ; oxygen transfer ; Zymomonas mobilis ; Corynebacterium glutamicum ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new bioreactor system has been developed for in vivo NMR spectroscopy of microorganisms under defined physiological conditions. This cyclone reactor with an integrated NMR flow cell is continuously operated in the magnet of a 400-MHz wide-bore NMR spectrometer system. The residence times of medium and cells are decoupled by a circulation-integrated cross-flow microfiltration module to achieve higher cell densities as compared to continuous fermentations without cell retention (increase in cell density up to a factor of 10 in steady state). Volumetric mass transfer coefficients kLa of more than 1.0 s-1 are possible in the membrane cyclone reactor, ensuring adequate oxygen supply [oxygen transfer rate 〉15,000 mg O2 ·(L h)-1] of high cell densities. With the aid of the membrane cyclone reactor we were able to show, using continuous in vivo 31P NMR spectroscopy of anaerobic glucose fermentation by Zymomonas mobilis, that the NMR signal intensity was directly proportional to the cell concentration in the reactor. The concentration profiles of intracellular inorganic phosphate, NAD(H), NDP, NTP, UDP-sugar, a cyclic pyrophosphate, two sugar phosphate pools, and extracellular inorganic phosphate were recorded after a shift from one steady state to another. The intracellular cyclic pyrophosphate had not been detected before in in vitro measurements of Zymomonas mobilis extracts due to the high instability of this compound. Using continuous in vivo 13C NMR spectroscopy of aerobic glucose utilization by Corynebacterium glutamicum at a density of 25 gcell dry weight · L-1, the membrane cyclone reactor served to measure the different dynamics of labeling in the carbon atoms of L-lactate, L-glutamate, succinate, and L-lysine with a time resolution of 10 min after impressing a [1-13C]-glucose pulse.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 168-180 
    ISSN: 0006-3592
    Keywords: metabolic fluxes ; metabolite balance ; NMR spectroscopy ; amino acid production ; bidirectional fluxes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To evaluate the importance of reactions within the central metabolism under different flux burdens the fluxes within the pentose phosphate pathway (PPP), as well as the other reactions of the central metabolism, were intensively analyzed and quantitated. For this purpose, Corynebacterium glutamicum was grown with [1-13C]glucose to metabolic and isotopic steady state and the fractional enrichments in precursor metabolites (e.g., pentose 5-phosphate) were quantified. Matrix calculus was used to express these data together with metabolite mass data. The detailed analysis of the dependence of 13C enrichments on exchange fluxes enabled the transketolase-catalyzed exchange rate (2 pentose 5-phosphate ↔ sedoheptulose 7-phosphate + glyceraldehyde 3-phosphate) to be quantified as 74.3% (molar metabolite flux) at a net flux of 10.3% and the exchange rate (pentose 5-phosphate + erythrose 4-phosphate ↔ fructose 6-phosphate + glyceraldehyde 3-phosphate) to be quantified as 5.6% at a net flux of 8.1%. The flux entering the tricarboxylic acid cycle was 93.3%. The same comprehensive flux analysis as performed for the nonexcreting condition was done with the identical strain that had been forced to excrete L-glutamate. Because we had already quantified the fluxes for L-lysine excretion with an isogenic strain, three directly comparable flux situations are thus available. Consequently, this comparison permits a direct cause-and-effect relationship to be specified. In response to the different flux burdens of the cell, the PPP flux decreased from a maximum of 67% to 26%, with the glycolytic flux increasing accordingly. The carbon flux through isocitrate dehydrogenase increased from 20% to 36%. The bidirectional carbon flux between pyruvate and oxaloacetate decreased from 36% to 9%. Since the cause of the three different flux states was the allelic exchange in the final L-lysine assembling pathway or the glutamate export activity, respectively, the flexible response is the effect. This shows conclusively the enormous flexibility within the central metabolism of C. glutamicum to supply precursors upon their withdrawal for the synthesis of amino acids. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 168-180, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...