ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-515X
    Keywords: agricultural soils ; arginine ammonification ; basal respiration ; CO2 emission ; microbial biomass content ; N2O emission
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Soil microbial biomass content, organic carbonmineralization as well as arginine ammonificationrates were estimated in samples from arable andgrassland soils and carbon dioxide and nitrous oxideemission rates were measured in situ at four sitesalong a catena. Soil microbial biomass contentincreased in the order, maize monoculture 〈 croprotation 〈 dry grassland 〈 wet grassland. The twoarable soils had similar rates of carbonmineralization in the laboratory at 22 °C (basalrespiration) as well as in situ (carbon dioxideemission) at field temperature. Under crop rotation,maize monoculture and dry grassland, the arginineammonification rate significantly correlated to themicrobial biomass content. In contrast, thebiomass-specific ammonification rate was low in wetgrassland soil, as were in situ N2O emission rates.Data from all sites together revealed no generalrelationship between microbial biomass content and Cand N mineralization rates. In addition, there was nogeneral relationship between the quantity of soilmicrobial biomass and the emission rates of thegreenhouse gases CO2 and N2O. The maize monocultureinduced a soil microbial community that was lessefficient in using organic carbon compounds, as shownby the high metabolic quotient (respiration rate perunit of biomass). However, microbial biomass contentwas proportional to basal respiration rate in soilsunder crop rotation, dry and wet grassland. Arginineammonification rate was related to microbial biomasscontent only in fertilized soils. Applications of highquantities of inorganic nitrogen and farmyard manureapparently increase in situ N2O emission rates,particularly under crop rotation. The microbialbiomass in the unfertilized wet grassland soil seemsto be a sink for nitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...