ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • N-synchronization  (1)
  • Nitrogen balance  (1)
  • 2000-2004  (2)
  • 1
    ISSN: 1432-0789
    Schlagwort(e): Key words Arbuscular mycorrhizal fungi ; Mucuna pruriens ; Nitrogen balance ; Relay cropping ; Indigenous rhizobial populations
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract  Leguminous cover crops such as Mucuna pruriens (mucuna) have the potential to contribute to soil N and increase the yields of subsequent or associated cereal crops through symbiotic N fixation. It has often been assumed that mucuna will freely nodulate, fix N2 and therefore contribute to soil N. However, results of recent work have indicated mucuna's failure to nodulate in some farmers' fields in the derived savanna in Benin. One of the management practices that can help to improve mucuna establishment and growth is the use of rhizobial inocula to ensure compatibility between the symbiotic partners. Experiments were conducted in 1995 and 1996 on 15 farmers' fields located in three different villages (Eglimé, Zouzouvou and Tchi) in the derived savanna in Benin. The aim was to determine the response of mucuna to inoculation and examine the factors affecting it when grown in relay cropping with maize. The actual amount of N2 fixed by mucuna in the farmers' fields at 20 weeks after planting (WAP) averaged 60 kg N ha–1 (range: 41–76 kg N ha–1) representing 55% (range: 49–58%) of the plant total N. The result suggested that mucuna in these farmers' fields could not meet its total N demand for growth and seed production only by N2 fixation. It was estimated that after grain removal mucuna led to a net N contribution ranging from –37 to 30 kg N ha–1. Shoot dry weight at 20 WAP varied between 1.5 and 8.7 t ha–1 and N accumulation ranged from 22 to 193 kg N ha–1. Inoculation increased shoot dry matter by an average of 28% above the uninoculated treatments, but the increase depended on the field, location and year. For the combinations of inoculated treatments and farmers' fields, the response frequency was higher in Eglimé and Tchi than in Zouzouvou. The response to inoculated treatments was dependent on the field and inversely related to the numbers of rhizobia in the soil. Soil rhizobial populations ranged from 0 to 〉188 cells g–1 soil, and response to inoculation often occurred when numbers of indigenous rhizobia were 〈5 cells g–1 soil. In two farmers' fields at Zouzouvou where extractable P was below 10 μg g–1 soil, mucuna did not respond to rhizobial inoculation despite a higher population of rhizobia. Significant relationships between mycorrhizal colonization, growth and nodulation of mucuna were observed, and inoculated plants with rhizobia had a higher rate of colonization by arbuscular mycorrhizal fungi (%AMF) than uninoculated ones. Therefore, it was shown that mucuna will establish and fix N2 effectively in those fields where farmer's management practices such as good crop rotation and rhizobial inoculation allow a build up of AMF spores that might lead to a high degree of AMF infection and alleviate P deficiency.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Nutrient cycling in agroecosystems 57 (2000), S. 131-140 
    ISSN: 1573-0867
    Schlagwort(e): herbaceous legumes ; imperata ; N recovery ; residue quality ; N-synchronization
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract In cover cropping systems in the tropics with herbaceous legumes, plant residues are expected to supply nitrogen (N) to non-legume crops during decomposition. Field experiments were carried out to (i) determine the effects of residue quality on decomposition and N release patterns of selected plants in cover cropping systems, (ii) relate the pattern of residue N release to N uptake by maize in cover cropping systems. To study decomposition, litter bags were used and monitored over two maize growing seasons. The residues studied were mucuna (Mucuna pruriens (L.) DC. var. utilis (Wright) Bruck), lablab (Lablab purpureus (L.) Sweet), and leaves and rhizomes of imperata (Imperata cylindrica (L.) Raueschel). Mucuna and lablab decomposed rapidly losing more than 60% of their dry weight within 28 days. In contrast, imperata decomposed slowly with only 25% of its dry matter lost in 56 days. At 28 days, mucuna had released 154 kg N ha-1 in in-situ mulch systems and 87 kg N ha-1 in live- mulch systems representing more than 50% of its N. More than 64% of N in lablab was released within 28 days amounting to 21 to 174 kg N ha-1. Imperata rhizomes mineralized 4 to 14 kg N ha-1 within 14 days, and subsequently immobilized N until 112 days whereas imperata leaves immobilized N throughout the study period. Decomposition and N release rates from the plant residues were most strongly correlated with the (lignin+polyphenol)/N ratio, N content, lignin/N ratio, polyphenol/N ratio, C/N ratio and lignin content of the residues. Relative to the controls, herbaceous legume residues increased maize dry matter yield and N uptake during the two cropping seasons. At 84 days, the maize crop had utilized 13 to 63 kg N ha-1from mucuna representing 13 to 36% of N released, whereas 16 to 25% of N released from mucuna was recovered by the maize crop at 168 days. The first maize crop recovered 9 to 62 kg N ha-1 or 28 to 35% of N released from lablab. However, at 168 days, N uptake by maize in antecedent live-mulched lablab was 32% higher than the quantity of N released, whereas imperata residues generally, resulted in net reduction of maize N uptake.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...