ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 111 (1997), S. 470-480 
    ISSN: 1432-1939
    Keywords: Key words15N ; N saturation ; Natural abundance ; Pinus sylvestris ; Pseudotsuga menziesii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Natural 15N abundance values were measured in needles, twigs, wood, soil, bulk precipitation, throughfall and soil water in a Douglas fir (Pseudotsuga menziesii (Mirb.) and a Scots pine (Pinus sylvestris L.) stand receiving high loads of nitrogen in throughfall (〉50 kg N ha−1 year−1). In the Douglas fir stand δ15N values of the vegetation ranged between −5.7 and −4.2‰ with little variation between different compartments. The vegetation of the Scots pine stand was less depleted in 15N and varied from −3.3 to −1.2‰δ15N. At both sites δ15N values increased with soil depth, from −5.7‰ and −1.2‰ in the organic layer to +4.1‰ and +4.7‰ at 70 cm soil depth in the Douglas fir and Scots pine stand, respectively. The δ15N values of inorganic nitrogen in bulk precipitation showed a seasonal variation with a mean in NH4 +-N of −0.6‰ at the Douglas fir stand and +10.8‰ at the Scots pine stand. In soil water below the organic layer NH4 +-N was enriched and NO3 −-N depleted in 15N, which was interpreted as being caused by isotope fractionation accompanying high nitrification rates in the organic layers. Mean δ15N values of NH4 + and NO3 − were very similar in the drainage water at 90 cm soil depth at both sites (−7.1 to −3.8‰). A dynamic N cycling model was used to test the sensitivity of the natural abundance values for the amount of N deposition, the 15N ratio of atmospheric N deposited and for the intrinsic isotope discrimination factors associated with N transformation processes. Simulated δ15N values for the N saturated ecosystems appeared particularly sensitive to the 15N ratio of atmospheric N inputs and discrimination factors during nitrification and mineralization. The N-saturated coniferous forest ecosystems studied were not characterized by elevated natural 15N abundance values. The results indicated that the natural 15N abundance values can only be used as indicators for the stage of nitrogen saturation of an ecosystem if the δ15N values of the deposited N and isotope fractionation factors are taken into consideration. Combining dynamic isotope models and natural 15N abundance values seems a promising technique for interpreting natural 15N abundance values found in these forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 104 (1998), S. 181-203 
    ISSN: 1573-2932
    Keywords: coniferous ecosystems ; Douglas fir ; 15N ; NICCCE ; NITREX ; nitrogen ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract For a Douglas fir forest ecosystem subjected to an experimental decrease in nitrogen (N) deposition, N dynamics were simulated using the dynamic simulation model NICCCE. Meteorological driving variables and N concentrations in throughfall were input to the model, that simulated results of a 15N tracer experiment, C and N concentrations in the soil, soil water chemistry and tree biomass. Four years of ambient N deposition, followed by four years of N deposition manipulations by means of a roof construction beneath the forest canopy, were modelled. Simulation of this second period was performed for a high-N treatment (37 kg N ha-1 yr-1) and a low-N treatment with throughfall-N at natural background level (6 kg N ha-1 yr-1). Calibration and model performance is discussed and compared to results of field experiments. The quick response of soil water chemistry after lowering N deposition and the 15N tracer signal observed in soil water at 90 cm soil depth, were simulated closely by the calibrated model. 15NH4-N data could only be simulated by accounting for bypass flow, indicating that throughfall water did not fully interact with the soil. Using the calibrated parameter set of the low-N treatment for the high-N treatment resulted in a lower model performance, although time trends were reproduced well also for this treatment. A sensitivity analysis showed model outcome of N transformations to be very sensitive to soil microbial parameters, such as the C efficiency. Use of the 15N tracer data in the calibration lowered uncertainties of these sensitive model parameters. Evaluation of the N input-output budget and microbial N transformations in the ecosystem revealed that lowering N inputs in this N saturated forest soil resulted in a more than proportional decrease of N leaching losses out of the soil system. Gross N transformations decreased under lowered N input, in particular the formation of NO3-N. Net N mineralization was not affected after four years of N manipulations. Net nitrification was decreased to about one third of the rate observed at the high-N deposition plot. Combining 15N tracer data with dynamic simulation modelling provides a powerful tool to improve model performance and process descriptions, and to evaluate impacts of atmospheric N deposition on N cycling in ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...