ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Self-assembly  (4)
  • N ligands  (2)
  • Supramolecular chemistry  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 1421-1428 
    ISSN: 1434-1948
    Keywords: Grid complexes ; Self-assembly ; Co ; Zn ; Coordination chemistry ; Bis(tridentate) ligands ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The tretrametallic [2 × 2] grid-type complexes 1-4 are formed by self-assembly of the bis(tridentate) ligands 5 and 6 with ZnII and CoII cations. They have been characterized by spectroscopic studies in solution as well as by crystal structure determination. The substituents in the central pyrimidine ring play an important role in terms of geometry and physical properties of the complexes. They induce an orthogonal orientation of the ligand in the complexes which is critical for the formation of ordered monolayers and extended self-organized arrays of grids. The physical properties of the complexes such as metal-metal interaction and π-π* stacking between the ligands may be modulated by changing these substituents.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1998 (1998), S. 977-982 
    ISSN: 1434-1948
    Keywords: Helicates ; Oligobipyridine ligands ; Self-recognition ; NMR titration ; Self-assembly ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Oligobipyridine ligands containing one or two imine bridges were found to form double helicates by treatment with copper(I) or silver(I). The properties of the complexes are similar to those of oxapropylene-bridged oligobipyridines. Titration of a mixture of the bis(bipyridine) and the tris(bipyridine) ligands with silver(I) hexafluorophosphate showed that helicates formed with strict self-recognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-1948
    Keywords: Self-assembly ; Tetranuclear CuII complex ; [2 × 2] grid-type complex ; Crystal structure ; Magnetic properties ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The ditopic ligand 3 has been synthesized. In its deprotonated form, it reacts with copper(II) ions to form a tetranuclear complex 1 of the [2 × 2] CuII4 grid type, the structure of which has been confirmed by X-ray crystallography. Magnetic studies of complex 1 indicate a very weak antiferromagnetic coupling between the phenoxo-bridged CuII ions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0570-0833
    Keywords: cobalt ; coordination modes ; N ligands ; supramolecular chemistry ; tetranuclearcomplexes ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0570-0833
    Keywords: coordination modes ; multinuclear complexes ; N ligands ; self-assembly ; silver ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 29 (1990), S. 1304-1319 
    ISSN: 0570-0833
    Keywords: Self-assembly ; Information processing ; Molecular information processing ; Molecular recognition ; Supramolecular chemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The selective binding of a substrate by a molecular receptor to form a supramolecular species involves molecular recognition which rests on the molecular information stored in the interacting species. The functions of supermolecules cover recognition, as well as catalysis and transport. In combination with polymolecular organization, they open ways towards molecular and supramolecular devices for information processing and signal generation. The development of such devices requires the design of molecular components performing a given function (e.g., photoactive, electroactive, ionoactive, thermoactive, or chemoactive) and suitable for assembly into an organized array. Light-conversion devices and charge-separation centers have been realized with photoactive cryptates formed by receptors containing photosensitive groups. Eleclroactive and ionoactive devices are required for carrying information via electronic and ionic signals. Redox-active polyolefinic chains, like the “caroviologens”, represent molecular wires for electron transfer through membranes. Push-pull polyolefins possess marked nonlinear optical properties. Tubular mesophases, formed by organized stacking of suitable macro-cyclic components, as well as “chundle”-type structures, based on bundles of chains grafted onto a macrocyclic support, represent approaches to ion channels. Lipophilic macrocyclic units form Langmuir-Blodgett films that may display molecular recognition at the air-water interface. Supramolecular chemistry has relied on more or less preorganized molecular receptors for effecting molecular recognition, catalysis, and transport processes. A step beyond preorganization consists in the design of systems undergoing self-organization, that is, systems capable of spontaneously generating a well-defined supramolecular architecture by self-assembling from their components under a given set of conditions. Several approaches to self-assembling systems have been pursued: the formation of helical metal complexes, the double-stranded helicates, which result from the spontaneous organization of two linear polybipyridine ligands into a double helix by binding of specific metal ions; the generation of mesophases and liquid crystalline polymers of supramolecular nature from complementary components, amounting to macroscopic expression of molecular recognition; the molecular-recognition-directed formation of ordered solid-state structures. Endowing photo-, electro-, and ionoactive components with recognition elements opens perspectives towards the design of programmed molecular and supramolecular systems capable of self-assembly into organized and functional supramolecular devices. Such systems may be able to perform highly selective operations of recognition, reaction, transfer, and structure generation for signal and information processing at the molecular and supramolecular levels.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0570-0833
    Keywords: Supramolecular chemistry ; Nobel lecture ; Macrocycles ; Molecular recognition ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by coreceptors, metalloreceptors, amphiphilic receptors, and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via cocatalysis. Lipophilic receptor molecules act as selective carriers for various substrates and make it possible to set up coupled transport processes linked to electron and proton gradients or to light. Whereas endoreceptors bind substrates in molecular cavities by convergent interactions, exoreceptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors, such as the metallonucleates, may be designed. In combination with polymolecular assemblies, receptors, carriers, and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer, and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons, or ions, thus defining fields of molecular photonics, electronics, and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light-conversion and charge-separation centers. Redox-active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes of double-helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic, and ionic devices that would perform highly selective recognition, reaction, and transfer operations for signal and information processing at the molecular level.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...